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Abstract

This article proposes an analytical approach to algorithms that stresses operations of folding. The aim of this approach is

to broaden the common analytical focus on algorithms as biased and opaque black boxes, and to instead highlight the

many relations that algorithms are interwoven with. Our proposed approach thus highlights how algorithms fold het-

erogeneous things: data, methods and objects with multiple ethical and political effects. We exemplify the utility of our

approach by proposing three specific operations of folding—proximation, universalisation and normalisation. The article

develops these three operations through four empirical vignettes, drawn from different settings that deal with algorithms

in relation to AIDS, Zika and stock markets. In proposing this analytical approach, we wish to highlight the many different

attachments and relations that algorithms enfold. The approach thus aims to produce accounts that highlight how

algorithms dynamically combine and reconfigure different social and material heterogeneities as well as the ethical,

normative and political consequences of these reconfigurations.
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Introduction

Algorithms appear able to connect different data, meth-
ods and objects smoothly between different settings,
from matters of social distinction to natural catastrophe
and crime.1 The widespread introduction of algorithms
in society seems closely tied to this ability to connect
things that were previously unrelated. The attraction of
algorithms thus often hinges on their ability to bridge the
particularities of one setting to reshape and perform
things in new manners (Ruppert, 2013a). Yet, the con-
nective and bridging capacity of algorithms is little ana-
lysed. Rather many analysts today tend to frame issues
of power and injustice in terms of bias within algorithmic
systems (cf. Eubanks, 2018; Noble, 2018; Steiner, 2012).

In this article, we therefore propose to pay attention
to algorithmic processes of connecting, relating or fold-
ing. The purpose of this is twofold: First, we propose a

mode of analysing algorithms which directs attention to
operations of folding over assessing the biases and opa-
city of algorithms. Second, we demonstrate the useful-
ness of this approach in understanding how society and
nature are ordered with algorithms rather than by algo-
rithms. That is, algorithms are in society, they do not
control society.

Importantly, in proposing this mode of analysis, we
attempt to move away from a focus on the hidden biases
in algorithms or data (Angwin et al. 2016; Introna and
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Wood, 2004; Kirkpatrick, 2016; Sandvig et al., 2016) as
well as from a problematisation of algorithms in terms of
opacity or accountability (Burrell, 2016; Diakopoulos,
2016; Zarsky, 2015).2 We instead wish to highlight
how algorithms relate and order a multitude of
things—for example, different types of data, materials,
methods, times, places or social relations—with some-
times unpredictable consequences.3

To be more concrete, it has become commonplace in
the literature on algorithms to argue that algorithms
could sustain, automate and accelerate oppression
(Noble, 2018) or injustice (Eubanks, 2018) as well as
reproduce social norms and bias (Steiner, 2012). A well-
known case has been the introduction of algorithmic
templates into sentencing and parole over the last dec-
ades in the USA. The hope was that the growth of
databases of crime patterns and the statistical evalu-
ation of re-offending rates would lead to evidence-
based sentencing. In this way, the introduction of algo-
rithmic sentencing was supposed to avoid the risk of
biases associated with individual judgements in trad-
itional judicial processes. However, in 2016,
ProPublica, a journalistic NGO, evaluated the risk
scores generated by one such algorithmic system,
widely used within the US criminal justice system
(Angwin et al., 2016). The evaluation showed that the
risk scores tended to violate formal non-discrimination
legislation as the system perpetuated the social and
racial stratification of the incidence of crime and of
convictions (Kirkpatrick, 2016).

One line of reasoning in this critical research implies
that if only algorithms were designed in the optimal and
correct way, they would generate results that were object-
ive and fair. It is precisely this rule-bound and routinised
nature of algorithms that seems to promise unbiased and
fair sentencing. We find this reasoning misleading as it
hides the multitude of relations algorithms are part of
and produce. In a sense, the very notion of biased algo-
rithms is linked to an objectivist understanding of how
knowledge is produced, and worryingly sidesteps decades
of research on the practices of knowledge production.4 In
this article, we instead want to stress that algorithms
cannot offer uniquely objective, fair and logical alterna-
tives to the social structures of our worlds.

Instead, we argue that algorithms must be under-
stood as sociotechnical systems (cf. Seaver, 2018).
They link society, technology and nature in a mesh of
relations. And it is through multiple operations of fol-
ding—of relating things—that they work: It is in the
many practices of relating, constructing, tinkering and
applying that algorithms gain their power to reshape
things. But, importantly in this perspective, it is not
always the algorithm that is doing the shaping or fold-
ing. Sometimes humans fold things into the algorithm,
and sometimes algorithms fold things into something

else. Hence, agency is not fixed with the algorithms or
with the humans (cf. Callon and Law, 1995). Thus, we
argue that paying attention to processes and operations
of folding can be a key mode for researchers to grasp
and account ‘for the distribution and fragmentation’ of
agency in algorithmic practices (Ruppert, 2013b: 272).

Consequently, we suggest that an analytical approach
focusing on folding—on relating things that were previ-
ously unconnected—is better able to account for the
varied processes by which algorithms order society and
nature.5 We consider case studies of the social and cul-
tural impact of specific, and sometimes biased, algo-
rithms as important inroads to understanding their
effects, but we also want to stress the urgency of produ-
cing conceptual tools that can be used to analyse what
algorithms do across multiple local and specific applica-
tions.6 Folding thus provides a means of addressing
efforts to ‘dispel the algorithmic sublime’ (Ames, 2018)
in algorithmic studies. With this we want to contribute
to going from ‘myth to mess,’ as Ziewitz puts it, and
allow for an engagement with the myriad of ways that
algorithms both order and reorder the world (2015: 6).

Analysing algorithms as an operation
of folding

As we have stated above, we believe that a focus
on operations of folding is a fruitful way of sidestepping
both debates about the fairness and the opacity of algo-
rithms. Thus, instead of mobilising the sometimes mis-
apprehended metaphor of the ‘black box’ to uncover
hidden and opaque operations of power within inaccess-
ible algorithms (Pasquale, 2015), we are interested in the
ways in which algorithms are part of ordering the social,
natural and normative (cf. Mol and Law, 1994).

In wielding the fold as an analytical tool, we take
inspiration from Bruno Latour’s wide-ranging and
diverse work on rhizomatic and relational ontologies,
expressed through concepts such as folding, translation,
rhizomes or networks (1999, 2002). Importantly for us,
Latour has developed the notion of folding as a critique
of essentialism that allows us to inquire into the mun-
dane power of facts and artefacts. Drawing on Deleuze
and Tarde, Latour has integrated the fold into his
description of an ontology based in monadology.
While for Deleuze the fold has become an important
aspect of his work on difference and multiplicity,
Latour uses the fold to describe associations and sub-
stitutions made by human and nonhuman actors that
constitute the networks they operate within (Deleuze,
1993; Latour, 2010; Latour et al., 2012).7

Tomobilise a useful figure, we draw onMichel Serres’
and Bruno Latour’s (1995) dialogue about a crumpled
handkerchief to think about folding. In their conversa-
tion, they develop the folds of the crumpled handkerchief
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into a critique of a traditional linear view of time.
Extending thismetaphor, wemight think about relations
as becoming folded or torn, like the handkerchief, to
encourage thinking in alternative topologies (cf. Mol
and Law, 1994). Rather than thinking about objects,
relations and concepts as stable entities with fixed dis-
tances and properties, we might attend to how different
topologies produce different nearnesses and rifts. In this
way, technologies, such as algorithms, can be under-
stood as folding time and space as much as social, polit-
ical and economic relations (cf. Latour, 2002: 248–249).
By analysing algorithms in thismanner, we argue that we
can gain a better understanding of how they become part
of ordering the world: sometimes superimposing things
that might seem distant and sometimes tearing apart
things that might seem close.

To be more concrete, using operations of folding to
understand algorithms allows us to pay attention to how
diverse things such as values, computations, datasets or
analytical methodologies are algorithmically brought
together to produce different versions of the social and
natural orders. For example, amathematical formula for
aftershock prediction might be folded into a system for
predictive policing (Benbouzid, 2017) or health statistics
from the USA in the 1960s might be folded into German
health recommendations in the 2010s (Bauer and
Amelang, 2016).8 Different times, places, computational
strategies and versions of the social becoming folded
together through the operations of algorithms.9

Analysing folding in four vignettes

To show the usefulness of paying attention to oper-
ations of folding, we analyse four empirical vignettes
where algorithms help order society and nature. The
vignettes reflect work done by the authors in diverse
settings and go into different levels of empirical detail.

In analysing these settings, we bring together some ways
in which algorithms fold sets of data, modes of reason-
ing and objects and subjects. To set them apart from the
general argument, the vignettes are placed in boxes, and
interspersed with analytical commentaries that draw out
our main argument. The vignettes are illustrative of
some facets of the operations of folding, and each vign-
ette highlights a particular theme. Importantly, these
vignettes have been chosen to demonstrate how algo-
rithmic operations of folding work in practice, from
producing proximities and universals, to bringing
these normative universals to bear on individuals.

Proximation: From proximities of social groups to
proximities of transmission

Our first vignette deals with the history of mapping
AIDS. The algorithmic generation of a novel ‘AIDS
space,’ as designed by the geographer Peter Gould,
draws attention to how algorithms can rearrange a geo-
graphic complexity into a non-geographical topog-
raphy. Here we attend to how an algorithmic
transformation of an AIDS visualisation can shift epi-
demiological attention from the populations that were
deemed most at risk toward the regions that are most
likely to be affected. It did so by replacing one norma-
tive framework of proximity with another. The picture
of an epidemic tidal wave sweeping over the country
was replaced with a map that instead reflected the spa-
tial coordinates of behaviour and identities character-
istic for AIDS. The traditional view was that
homosexual men, heroin users, haemophiliacs and
Haitians were the origin of the epidemic, but Gould’s
AIDS space instead crafted a spatial representation
which highlighted the specific patterns in which the epi-
demic worked, producing new proximities and dis-
tances to the AIDS epidemic.

Drawn after diagram in Gould et al. (1991: 86).
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Vignette 1: Folding different versions of

proximity/mapping the AIDS space

In 1990, the geographer Gould expressed his discon-
tent with how the AIDS epidemic was mapped
across the United States (Gould et al., 1991).
Gould was not satisfied with the image of AIDS
conjured in the traditional sequence of maps.
These maps usually showed the progress of the dis-
ease over time like a tidal wave washing over
national geographies in a sequence of steps. These
geographical and temporal visualisations, he argued,
allowed for complacency regarding the spatial pat-
tern he had observed, which was not comparable to
a slow and homogenous spreading.
To solve his problem, Gould developed a competing
algorithm, which would capture the pathways and
complicated spatial–temporal distribution of AIDS.
He translated the geographic distribution and the
inhabited landscape into a statistical representation
of the rapid transmission of the emerging epidemic.
As a result, the map was replaced by a diagram in
which the spatial distribution had become a charac-
teristic of the epidemic—as the epidemic now
became visualised as a cluster centred around
urban habitation.

Gould designed his algorithm as a way to predict the
next outbreak. He was convinced that sequential
series of maps could only deliver a vague picture of
threat which might shore up a sense of false security.
Moving away from the evocative image of a tidal
wave, Gould’s team aimed to integrate the highly
specific social structure of the epidemic and its rela-
tionships to urban nodal points. His intent was to
alarm teenagers, students and health practitioners
who did not acknowledge their own proximity to
the epidemic. A new set of proximities were forged
through Gould’s topography.

In contrast to the traditional tidal wave, Gould’s
new algorithm laid out a model for rethinking the
distribution of AIDS with respect to relative popu-
lation density. The argument was that AIDS could
be differentiated from a contagious disease like the
plague, for which diffusion follows a gradual distri-
bution over geographical space, reaching village
after village as if it were a map of an extending
flood. Gould’s maps instead showed how AIDS
jumped from one large city to another, accompanied
by slower diffusion to the surrounding countryside.
This crafted a geographic projection, in which the
disease was not plotted in relation to the space in
which it moves, but rather space was rearranged

along the characteristic dynamics of the epidemic.
Gould plotted what he called an ‘AIDS space.’ By
moving the urban centres out of their geographic
position and grouping them together according to
the probability of the next infection, he could visu-
alise the proximity of the next AIDS event
(Engelmann, 2018: 124; Gould et al., 1991; Koch,
2005: 272).

The ‘AIDS space’ provides insight into how algo-
rithms can fold the world to create new proximities.
Gould’s algorithm produced a new order of the epidemic
built on its transmission patterns and associated risk
behaviours, and plotted a map of AIDS as a new topo-
logical order, which was designed to enable an accurate
prediction of the epidemic. The previous focus on the
proximity of particular populations to the epidemic was
thus replaced with a focus on the specific patterns of
transmission and risk. Gould thus dissolved the geo-
graphical distance of the cities affected by AIDS.
He used his algorithm to draw a map entirely differ-
ent from the usual visual representations: his map trans-
formed the geography of the USA into a new spatial
distribution that was deemed more characteristic
of AIDS.

Gould’s algorithm takes on a double function in this
context. First, the algorithm re-assembles the transmis-
sion pathways characteristic for HIV and presents a
formalised expression of the nature of AIDS. Its first
impact was to replace a focus on particular risk groups
with a focus grounded in the formalisation of the epi-
demic as a series of infections. Gould’s algorithm thus
transformed sexual behaviours and practices into a new
set of proximities. But second, the algorithm took these
characteristic patterns of the epidemic and re-shaped
them into a new spatial pattern, transforming its
social topography of infection into a geography of
transmission in which new proximities and new spaces
of risk were made visible.

Gould’s AIDS space became a timely reminder that
social and cultural framings of the epidemic had con-
strained the understandings of both the research com-
munity and the general public. It was intended to
replace the traditional picture, which was attached to
stereotypes, rumours and false epidemiological assump-
tions. Thinking AIDS through its unique spatial pat-
tern was an invitation to unsee the proximity of
homosexual men, heroin users, haemophiliacs and
Haitians to the epidemic. Instead, Gould’s map
evoked a picture of a new spatial order—a set of
social proximities was replaced with a set of spatial
proximities. Two versions of the AIDS epidemic were
set against each other.
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This brings us to our second operation of folding:
the algorithmic production of universals through a het-
erogeneity of particulars. Here we attend to the folding
of a global universal, from a multitude of elements,
through an algorithm that was used to produce the
‘Current Zika State.’

Universalisation: From a multitude of particulars
to a global neverwhere

The algorithmic production of the ‘Current Zika State’
shows how algorithms transform a set of local particu-
larities into an apparent global universal, which also
performs certain places as proximate to the Zika epi-
demic. It demonstrates—through the construction of
the ‘Current Zika State’—how a series of particular
data, measurements, calculations and hypotheses are
algorithmically assembled and merged to project a uni-
versal view of Zika. These operations give particular
times and places the ability to stand for all times and
places. Far from existing outside of or exterior to par-
ticularity, universals like those of the global Zika map,
or the AIDS space described above, complexly com-
bine, incorporate and interiorise particular data and
calculations from different times and places. Here we
deal with an operation of folding where a heteroge-
neous set of partial elements is brought together and

transformed to produce a universal view. A new uni-
versality is created that appears to be self-evident—a
natural fact of the world.

Vignette 2: A global neverwhere/producing the

Current Zika State

The goal of disease surveillance is to control the
spread of disease. Algorithms, machine learning
and databases promise to handle larger and larger
sets of data—and more data promises more sensitiv-
ity to disease outbreaks. Zika is a recent addition to
the global bestiary of pandemic threats, and quickly
rose to fame before the Olympic games in Rio de
Janeiro. Zika provoked a flurry of media attention.
Media headlines such as ‘Zika Virus Makes Rio
Olympics a Threat in Brazil and Abroad’ circulated
the globe (Kassam, 2016). The fact that Zika is both
sexually transmitted and transmitted by the Aedes
aegypti mosquito triggered a scare that the disease
would spread rapidly across continents.
The aim of government disease surveillance organ-
isations is to track, prevent, and curtail different epi-
demics in the world, including Zika. Surveilling any
disease depends on a huge amount of work, and
Zika is no different. Zika surveillance depends both
on quantifying Zika cases around the world as well

The Current Zika State.10
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as other infrastructures for quantified risk predic-
tion. One of the challenges is that many warmer
and wetter countries do not have the resources to
build and maintain infrastructures for tracking
Zika and the feared Aedes aegypti mosquito. How
do you then capture where there is Zika risk
globally?

To address these challenges, the European Centre
for Disease Control and Prevention (ECDC) created
an algorithm to track the Zika epidemic and to pre-
dict Zika risk across the globe. This algorithm drew
together several different datasets, computational
methodologies and infrastructures that tied the
Zika epidemic to both the modelling of mosquitos
and climate zones. For example, the ECDC algo-
rithm utilised a risk modelling approach to predict
the presence of the Aedes aegypti mosquito in a geo-
graphical area. This risk model harnessed data about
where the Aedes aegypti had been found, taken from
different infrastructures, times and places across the
globe. For instance, the geographical range of the
Aedes aegypti was calculated based on data from
the US Centers for Disease Control and
Prevention, but was also based on data about the
mosquito published in scientific journals.11 This
risk model of Zika also folded historical climate
data drawn from a multitude of weather satellites,
and computations from several different climate
models. In sum, the risk model aimed to predict
whether a habitat could be suitable for the Aedes
aegypti mosquito by combining data from many dif-
ferent times and places.

However, the ECDC algorithm did not solely tie the
Zika risk to computations pertaining to the A.
aegypti mosquito. Zika risk was also inferred by
modelling the risk of Dengue (which is also trans-
mitted by the A. aegypti mosquito) as well as by
using a so-called Köppen–Geiger climate classifica-
tion of the world. All of these different models, data-
sets, classifications and computations were
harnessed in the Zika algorithm to produce a snap-
shot of what was published as the ‘Current Zika
State’ of the world. The point is that the ‘Current
Zika State’ drew on a plethora of different times,
places, computational efforts and infrastructures.
To know the risk of Zika, algorithms connected
past, present and future as well as a multitude of
particularities of Zika.

The ECDC algorithm, just as the AIDS maps above,
brings together a multitude of datasets to produce a

universal and global view of a pandemic, where certain
countries and people are more proximate to the Zika
epidemic than others. However, what seems to be a
map of disease encompassing the entire world is
actually a chimera made up of very different data.
This global and universalising map ignores absences
in the data and the mosaicked qualities that come
from the multitude of different data forms. The particu-
larity and partiality of the data are removed from the
global view. From the map itself, it is not clear how and
why different data are combined, and for which areas.
The map gives an account of Zika transmission, but it
contains no traces of the work that was necessary to
collect these data and combine them into a global view
of Zika.

These heterogeneities represent a diversity of prac-
tices, locations and timescales, bringing a multitude
into a universal coherence. In short, the Zika algorithm
is an excellent example of universalisation: Through the
algorithm’s different operations of folding things
together, particulars are transformed into apparent uni-
versals. This is the apparent Janus-face of the algo-
rithm: a complex and heterogeneous past, which can
produce a smooth and universal present or future. A
set of particularities becoming a smooth and coherent
‘view from nowhere’ (cf. Haraway, 1988)—an algorith-
mic neverwhere.

Normalisation: From enveloping to developing the
normal

We now turn to the algorithmic production of ‘the
normal’ by attending to the prediction of stock market
risk. In finance, just as in many complex systems, regular
activity is characterised by its unpredictability. It can
therefore be exceedingly difficult to determine precisely
what the normal state of the financial system is. Perhaps
because of this unpredictability, algorithms have incred-
ible justificatory power in debates over whether a par-
ticular economic pattern represents normal or abnormal
variation of economic activity. There are currently
numerous efforts to algorithmically detect aberrant pat-
terns that diverge from ordinary background noise of
‘normal’ economic activity.

In recent years, debates over the normal state of
financial markets have focused on how aberrations
arise. Algorithmic models are routinely used to argue
that financial crashes are normal to markets, on the one
hand, and that they are abnormal and aberrant, on the
other. Economists on each side put forth different algo-
rithms and prioritise different styles of reasoning, from
statistical judgement to the recognition of visual pat-
terns. Different algorithms are thus built to identify
deviations and abnormalities based on particular ver-
sions of normality. These versions of normality are
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expressed through mathematical functions such as, for
instance, the normal or ‘Bell’ curve. Thus, in algorithms
built to detect normality and abnormality, specific ver-
sions of the normal are translated into mathematical
form and folded into the calculative logic of particular
algorithms.

Vignette 3: Competing versions of the normal/

modelling stock market risk

Financial markets do not collapse every day, but
they do collapse, and their crashes are unpredictable.
Attempts to foresee crashes through algorithms
depend in large part on different conceptions of
what markets are and how they work. Today, two
ways of understanding markets are common. First,
there is the dominant view, which sees crashes as
outliers: rare and unlucky events. Second, there are
alternative perspectives, which see crashes as integral
to contemporary capitalist markets: a likely, if
unpredictable, occurrence.

The Black–Scholes–Merton model (BSM) is one of
the most well-known examples of the dominant
paradigm that sees markets as outliers
(MacKenzie, 2006). Like many mainstream models,
it relies on the normal or ‘Bell’ curve, which implies
that small changes in markets are incredibly
common and very large changes, i.e. crashes, are
incredibly rare. Thus, the BSM model includes as
one of its assumptions that major crashes are unli-
kely in contemporary financial systems. In contrast,
alternative models like those of Benoit Mandelbrot
(Mandelbrot, 1997; Mandelbrot and Hudson, 2004)

avoid the normal curve, instead relying on graphs
like the power law curve.

Unlike the normal curve, the power law curve
includes the assumption that very large changes in
the market occur far more often than traditional
models, based on the normal curve, would suggest.
As a result, models that use the power law curve
include the assumption that crashes are in fact
normal, in the sense of frequent, occurrences.

Both the dominant BSM models and Mandelbrot’s
alternative models rely on algorithms, but the two
types of model involve fundamentally different
assumptions about what is normal. So the choice
of which model to use necessarily involves a choice
about which kind of normal—whether crashes are
rare or common—one should assume.

Yet, algorithms cannot tell us which choice to make
because the decision about what is normal is central to
deciding which algorithm to use in the first place.
Instead, the choice over assumptions about the
normal is made using a variety of styles of reasoning
including statistical knowledge, previous use of algo-
rithms, professional familiarity with trading prac-
tices, systemic knowledge of financial regulation,
discussions with peers, and so on. So contrary to the
presumption that the use of algorithms would resolve
what is normal, the algorithmsmake different concep-
tualisations of the normal even more complex.

Mandelbrot’s model was intended, in part, to settle
debates over what is normal for financial markets.

  Normal Curve  Power Law Curve
Y
/\Y

/\

> X > X

Figure: The normal curve and the power law curve. The x-axis indicates the magnitude of a particular change—for example, the extent

of the rise or fall of a stock market in a given time period. The y-axis indicates the frequency of changes of that magnitude—for

example, how often the market has risen or fallen that amount. Given the same set of parameters, a process modeled with the normal

curve approaches the x-axis more quickly than the power law curve, indicating that there are fewer changes that are either extremely

large or extremely small.12
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However, to date, far from resolving conflicts over
the normal, Mandelbrot’s model simply adds
another definition of the normal into the mix.

Thus, for stock market models, there is competition
between the different normals and different algorithms.
Practical assessments of markets, including the kinds of
judgements about ‘how well’ the market is doing, rely
on both BSM and Mandelbrot algorithms, which are
each enfolded with different ideas about a normal
market. The use of algorithms in finance thus involves
transforming different versions of the normal, including
statistical norms, social knowledge about the frequency
of market crashes and visual assessments of the normal
appearance of a graph, into the overall production of
what is normal for finance.

This is not unique for stock market models.
Most algorithms are folded with particular versions
of the normal. For instance, ideas about normality
were also folded into the Zika algorithm. While model-
ling the habitat of the Aedes aegypti mosquito, envir-
onmental data stemming from satellites were
mathematically transformed into oscillating cyclical
curves. The assumption built into the mosquito-
model was that the normal behaviour of nature was
cyclical in terms of, for instance, rainfall, temperature
or vegetation index. However, this cyclical version of
‘normal nature’ does not fit well with non-cyclical
changes in the environment—such as climate change,
deforestation or processes of urbanisation. Likewise, in
the case of Gould’s AIDS space, what was traditionally
represented as an epidemic tidal wave was replaced
by a new mathematical description of the normal
transmission patterns of the AIDS epidemic. Different
versions of normality were folded with the different
algorithms.

This indicates that algorithms alone cannot settle
debates about the state of the world. Rather than
being the source of well-defined normalities, algorithms
are constantly folded with different valuations and
styles of reasoning in producing what is considered
normal. Consequently, algorithms are used in struggles
over what is normal, and are often used in ways that
complicate, rather than resolve, debates over normality.

Bringing it all together: Proximations,
universalisations and normalisations in the Recent
Infection Testing Algorithm

This brings us to our last vignette, where we bring
together our three operations of folding—proximations,
universalisations and normalisations—in one setting.
Here, we turn to a second algorithm related to AIDS,

a Recent Infection Testing Algorithm (RITA).13 RITA
was first developed to estimate the incidence rates of HIV
by calculating the ‘recency’ or major time-points of an
infection process in a population. But to complicate the
matter, RITA is also sometimes used to do epidemio-
logical assessments for individual patient management.
Thus, this algorithm is, among other things, used for
bringing the aggregated population dynamics of the
AIDS epidemic to bear on an individual patient’s disease.

However, the estimated time-points of infection have
limited levels of reliability and robustness, and their
applicability for individual cases is unclear, as the
calculated time-points are merely a statistical approxi-
mation. The estimated time-points can be said to be a
one-size-fits-all approximation of what a normal
immune response to HIV is, based on a particular stat-
istical population. To compound the issue, RITA does
not incorporate individual case details, nor the myriad
of potential exceptions to the existing norm, into the
approximations. RITA thus assembles a system in
which a statistical pattern produces a statistical view of
the progression of a ‘normal AIDS infection.’ These
computed statistical time-points are, as we show in the
vignette, then sometimes brought to bear on individual
patient assessments and plans for future treatment. A
universalised population, and an algorithmic enactment
of the progression of a normal AIDS infection, is thus
brought proximate to individual patients.

Vignette 4: How a population algorithm became an

algorithm for assessing individuals

Algorithmic practices have become entangled with
AIDS and HIV in a variety of ways. In the domain
of HIV governance, an algorithm can both be under-
stood as an entity that coordinates a testing pro-
cess—often through visualisation and images—as
well as an object that calculates and formats the
results of different laboratory tests. RITA is an
example of such a device. RITA was first designed
for use in public health practices, specifically to cal-
culate the incidence of HIV infections. The goal was
to calculate the recency of infections in a tested
population by statistically estimating the significant
time-points or steps in the infection.14

However, since its origin as a device for population
measurement, RITA has also become a tool for esti-
mating how recently an individual was infected with
HIV. As a consequence of this shift from the popu-
lation to the individual, RITA may, for instance, be
used to verify the timing of infection that a patient
accounts for. Furthermore, as it is a punishable
offence in certain jurisdictions to not inform a sex
partner of being HIV infected, RITA can also be
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used to validate the testimony of a patient when
prosecuting transmission cases. In such cases, the
algorithmically computed progression of a ‘normal
infection’ is folded onto an individual case, with
potentially grave consequences for the individual.

In essence, the effect of RITA is that it transforms
the temporality of HIV infection by staging some
infections as ‘recent’ and others as ‘long standing.’
But recency is a complicated matter. The thresholds
used to mark a recent infection may be statistically
reliable on the population level, but might be diag-
nostically problematic on the individual level
(Kassanjee et al., 2012). Immune system variation
in patients, and other factors that are yet unknown,
quite often produce RITA results that can be argued
to be false using other techniques. This problem can
be addressed through confidence intervals and mod-
elling on the population level, but have far more
severe implications when individual patients
become accountable to them—such as when patients
are prosecuted for transmitting the disease.15

While RITA still plays an important role in the
national and international surveillance of AIDS popu-
lations, it has thus also become used for prevention
planning, identification of individuals for research
and managing individual patients living with HIV
(Murphy et al. 2017). In these ways, the statistically
produced AIDS population is folded onto individual
AIDS patients.

Yet, the population constructed with RITA includes
assumptions that do not apply to all patients, and this
creates problems when applying RITA to the individual
level. For example, one might think low levels of HIV
would indicate a recent infection. Contrary to this logic,
it has been shown that some patients, who have been
identified as infected, suppress HIV to nearly undetect-
able levels—without medical treatment. They have been
labelled ‘elite controllers’ by practitioners in the field
and do not fit into the progression of a ‘normal infec-
tion.’ These elite controllers demonstrate that the
assumptions about what is a normal infection across
all AIDS populations cannot be taken for granted.
Different individual infections can progress according
to individual rates that do not correspond to the stat-
istical estimates. So applying RITA’s ‘normal rate of
progression’ to an individual might actually mislead
doctors.

The use of the RITA thus underscores the complex
operations of folding through which algorithms can
shape knowledge about and action on the world.
Indeed, the RITA—just as the algorithms in our

other vignettes—produces both universalisations and
normalisations. It produces both a universalised AIDS
population based on a plethora of data as well as a
computed ‘normal AIDS infection.’ Hence, just as
a financial algorithm produces a particular version
of a normal market, RITA produces a particular ver-
sion of a ‘normal AIDS infection.’ But the RITA
also brings this ‘normal AIDS infection’ proximate
to individual AIDS patients in that an individual’s dis-
ease progression can be measured against the normal
infection. Thus, algorithms can become a point where
‘everything is tied together in one particular spot’
(Serres and Latour, 1995: 87)—particulars become uni-
versals, universals produce normals, and new proximities
are made.

A new direction in algorithm studies?

Thinking with operations of folding

As algorithms are increasingly used to bring together
heterogeneous data, methods, objects and relations,
they also help to produce new orderings of society
and nature. We have argued that paying attention to
operations of folding can be a key strategy for under-
standing how a diversity of objects are refashioned
through algorithmic practices, and that this strategy
might broaden and complement approaches that
assess algorithms for fairness or bias or lament their
opacity (pace Angwin et al., 2016; Kirkpatrick, 2016).
That is, we argue that when ‘unbiased data’ and ‘fair
algorithms’ become the focus, there is a risk that ques-
tions about situatedness, partiality, and the produc-
tion of the ‘normal’ become invisible. But they
remain crucial questions to pose, if we are to deal
analytically with the increasing influence of algorithms
in society.

In proposing this approach, we emphasise that fold-
ing is not an innocent operation, and that algorithms
do not work through neutral operations that bring the
world together in a detached manner. Rather any ana-
lysis of algorithms needs to acknowledge that they
work through attachment and relation, not through
detachment, biases or objectivity. Thus, drawing on
Latour’s (2002) work, we argue that folding entails a
translation not a transmission, in the sense that an algo-
rithm does not fold things unaltered. To be clear, pol-
itical relations and attachments can certainly come in
the form of nefarious and hidden bias or calculations in
the algorithm, but there are many other
attachments and forms of politics that we need to
heed in our analyses.

In attending to operations of folding above, our first
analytical move was to zero in on how algorithms make
proximate different objects and relations. We showed
how an epidemiological model, which visualised an
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epidemic as a tidal wave, was replaced with a new top-
ology that brought geography into focus rather than
specific risk groups. What people, objects or relations
are then produced as proximate or far away by
algorithms?

Our second move was to analyse how universals are
produced through the folding of partialities. By attend-
ing to the algorithmic construction of a global disease
map, we zeroed in on how a multitude of heterogeneous
objects—data, methods, objects and relations—were
used to assemble a global and coherent map of disease.
What partialities are then made to stand in for the
whole? What is made part of the universal and what
becomes invisible?

Our third analytic entailed attending to how algo-
rithms are folded with different versions of the normal.
In this we ask: How do assumptions about the normal
become folded into algorithms? And how is the normal
or abnormal then performed with algorithms?

So where do we go from here? Analysing operations
of folding means remaining open to the different types
of relations, politics and attachments that are made and
unmade with algorithms. It means tracing operations
of folding, regardless of what is folded and by whom.
It means remaining agnostic as to what things can be
folded with algorithms, and in what ways they can
be folded. It means following algorithms through a
diverse array of practices, both social and technical,
sometimes in the same place, but sometimes through
different settings, different logics, and different times
and places. Rather than reifying algorithms as uniquely
powerful and opaque black boxes, analysing operations
of folding opens a different route, which highlights how
algorithms can dynamically combine and reconfigure
different social and material heterogeneities. We can
then begin in earnest to investigate the relations,
ethics and politics of algorithms.
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Notes

1. To take two examples: algorithms are sometimes claimed

to be able to ‘automate social theory’ by creating recom-
mendation systems that do not rely on demographic data
(Seaver, 2012); algorithms that were developed to detect

earthquakes have also been re-purposed for use in sys-
tems for the so-called predictive policing—and are

claimed to be able to predict where and when crime will
happen (Benbouzid, 2017).

2. It is not possible in the limited space of a journal article to

encompass the complete breadth and depth of research
on algorithms, but a good starting point for the curious
reader is: https://socialmediacollective.org/reading-lists/

critical-algorithm-studies/
3. Importantly, we do not assume that operations of folding

are exclusive to the domain of algorithms. One could, for

example, argue that, historically, rules have often led to
effects of folding, as they presume a reorganisation of
social, cultural and natural orders. See, for example,

Daston (2019).
4. See, for example, Bloor (1976) or Collins (1975) for clas-

sic examples. We argue that an analytical focus on oper-
ations of folding opens up a space for dealing with
algorithmic effects as they are related to, or attached to,

a heterogeneity of elements, without succumbing to the
temptation of producing ‘Whiggish histories’ that
uncover the unbiased reality that is hidden behind the

algorithm.
5. Algorithms can do many different things. They can sort,

filter, recombine. The list is almost endless. However, we

argue that folding can capture a central and generic
aspect of many of today’s algorithmic systems.

6. This mode of analysis could for instance be used to deal

with cases such as the one David Ribes describes when he
examines the pursuit of an idealised ‘domain-indepen-
dence’ in the historical development of data-science: a

good program, a useful algorithm was thought to be cap-
able of finding application across domains, such as medi-

cine and law or education and biology (Ribes, 2018).
7. In approaching technology through the concept of the

fold, Latour draws on Deleuze but pursues a much

more pragmatic notion of the fold. Technology folds
time, space and the type of actants involved. As such
Latour defines a ‘regime proper to technology by the

notion of fold, without giving it all the Leibnizian conno-
tations that Gilles Deleuze (1993) has elaborated so well.’
(Latour, 2002: 248).

8. For more on the use of algorithms in predictive policing,
see, e.g., Amoore (2013) and Ruppert (2013a).

9. Our proposed analysis of folding can thus be incorpo-

rated into existing research that interrogates algorithms
in society. This includes practices through which algo-

rithms are implemented (Christin, 2017), work on how
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algorithms are reshaping observation (McQuillan, 2016)

and rationality (Lowrie, 2017), while also addressing the

relations between the algorithmic and the non-algorith-

mic (Dourish, 2016).
10. This version of the map was published at https://ecdc.

europa.eu/en/publications-data/current-zika-transmis-

sion-worldwide on 29 August 2017.

11. To complicate the matter further, there are very few stu-

dies published about where the Aedes aegypti mosquito is

not present. This lack of data is solved by simulating the

absence of Aedes aegypti based on ecological distance.
12. As Donald MacKenzie has reminded us, in this figure the

tails of the normal curve blend into the horizontal axis,

though the Gaussian distribution’s tails are asymptotic:

they never actually get down to zero.

13. This algorithm is referred to as RITA by the World

Health Organization, though this name is contested by

the makers of the algorithm who prefer the label Test

for Recent Infection.
14. While variations of these algorithms can be found, most

versions of RITA include both immunological and viro-

logical components. These components quantify the strength

of the immune system, the presence of viral genes in the

sample population as well as a function that identifies sub-

jects undergoing anti-retroviral treatment.

15. As noted by a recent paper to the Global Commission on

HIV and the Law (Weait, 2011):

In the case of HIV transmission, new tests, known

as RITA (Recent Infection Testing Algorithm)

tests, are sometimes being used to assess rates of

recent infection in the population, and it is possible

that a RITA test result for an individual sample

might be offered as evidence of the timing of infec-

tion. These tests are sometimes also known as

STARHS (Serological Testing Algorithm for

Recent HIV Seroconversion) tests. Prosecutors

should be aware that there are limitations on the

reliability of such evidence at an individual level.
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Perspectives on algorithmic normativities:
engineers, objects, activities

Jérémy Grosman2 and Tyler Reigeluth1

Abstract

This contribution aims at proposing a framework for articulating different kinds of ‘‘normativities’’ that are and can be

attributed to ‘‘algorithmic systems.’’ The technical normativity manifests itself through the lineage of technical objects.

The norm expresses a technical scheme’s becoming as it mutates through, but also resists, inventions. The genealogy of

neural networks shall provide a powerful illustration of this dynamic by engaging with their concrete functioning as well

as their unsuspected potentialities. The socio-technical normativity accounts for the manners in which engineers, as

actors folded into socio-technical networks, willingly or unwittingly, infuse technical objects with values materialized in

the system. Surveillance systems’ design will serve here to instantiate the ongoing mediation through which algorithmic

systems are endowed with specific capacities. The behavioral normativity is the normative activity, in which both organic

and mechanical behaviors are actively participating, undoing the identification of machines with ‘‘norm following,’’ and

organisms with ‘‘norminstitution’’. This proposition productively accounts for the singularity of machine learning algo-

rithms, explored here through the case of recommender systems. The paper will provide substantial discussions of the

notions of ‘‘normative’’ by cutting across history and philosophy of science, legal, and critical theory, as well as ‘‘algo-

rithmics,’’ and by confronting our studies led in engineering laboratories with critical algorithm studies.
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Machine learning, technical normativity, socio-technical normativity, Gilbert Simondon, neural networks, behavioral

normativity

This article is a part of special theme on Algorithmic Normativities. To see a full list of all articles in this special

theme, please click here: https://journals.sagepub.com/page/bds/collections/algorithmic_normativities.

Introduction

It is generally agreed upon that ‘‘algorithmic systems’’
implementing machine learning techniques have signifi-
cant normative effects upon the ways items are recom-
mended and consumed, the ways choices are taken and
justified. However, the aspect and extent of those
‘‘normative effects’’ are subject to much disagreement.
Some claim that ‘‘algorithmic systems’’ significantly
affect the way norms are conceived and instituted.
Others maintain that algorithmic systems are actually
black boxing more traditional normative processes
(Diakopoulos, 2013). The problem partly lies in
accounting for the different kinds of ‘‘normativities’’
that are, and can be attributed to, ‘‘algorithmic sys-
tems.’’ Our paper proposes a substantial discussion of

‘‘algorithmic normativities’’ by accounting for the prac-
tices we witnessed in diverse engineering laboratories
and by confronting literature in sociology, history and
philosophy of technology (see for instance Beer 2017
and Ziewitz 2016). Before going any further let us
begin by providing working definitions of ‘‘algorithm’’
and ‘‘norm,’’ the value of which should be measured by
the conceptual and practical relations they give rise to
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when thinking about, or interacting with, algorithmic
systems.

From an engineering standpoint, algorithms can be
helpfully approached as stabilized and formalized com-
putational techniques that scientists and engineers rec-
ognize and manipulate as an object throughout a
variety of disparate inscriptions (e.g., formalized expres-
sions, diagrammatic representations, coded instruc-
tions, traces of executions) and through a variety of
disparate actions (e.g., formal proofs, intuitive manipu-
lations, material implementations, concrete experimen-
tations). Computational techniques only become
algorithms when calculators find it useful to stabilize
and formalize them (see Hill, 2016). Two further fea-
tures must be added to make sense of what engineers
commonly call ‘‘algorithms.’’ First, algorithms are, for
most computer scientists, objects about which know-
ledge can be produced and communicated. Second,
algorithms are, for most software engineers, things
likely to be recognized in many different systems. In
other words, to warrant the qualification of algorithm,
a stabilized and formalized computational technique
needs to possess, and be invested with, a certain signifi-
cance within a certain practice (Pickering, 1995).

From a generic standpoint, vital, social or technical
norms can be approached either as a description of a
range of events, or as a prescription for a range of
actions—it has convincingly been argued that, in most
cases, these descriptive and prescriptive meanings
cannot be satisfactorily disentangled (Canguilhem,
1943; Putnam, 2002). Three features should be empha-
sized. First, a norm expresses a relation between a set of
disparate changes—social norms, for instance, typically
describe or prescribe ways of behaving within specific
situations. Second, a norm reveals itself when individ-
uals are propelled to contrast their ways of behaving
with others’—again, social norms typically manifest
themselves whenever individuals experience specific
situations as being problematic or conflictual. Third,
a norm is both instituted and followed—social norms
are typically instituted as the solution to a collective
experience of a problematic or conflictual situation.
The notions of ‘‘normativity’’ and ‘‘normalization,’’
to which we will hereafter refer, denote the processes
through which an activity, respectively, comes to insti-
tute or to follow specific norms.

The following pages further investigate how distinct
kinds of normativities come into play through these
socio-technical assemblages we call algorithmic
systems.

. The first section exposes some of the minute actions
through which engineers willingly or unwittingly
infuse technical systems with social norms. The
design of a surveillance system will serve to unfold

the ongoing mediations (e.g., collecting data, defin-
ing metrics, establishing functions) that allow engin-
eers to normalize the behaviors of algorithmic
systems (e.g., how algorithms improve their ability
to discriminate between threatening and nonthrea-
tening behaviors).

. The second section shows how successive changes in
algorithms’ structures and operations reveal distinct
kinds of technical normativities—be they schematic,
formal or material. A liminal genealogy of artificial
neural networks shall provide a powerful illustration
of this dynamic by engaging with their concrete
functioning as well as their unsuspected potential-
ities (e.g., how the invention of optimization
algorithms or parallel processors considerably trans-
formed these networks).

. The third section proposes to conceive of learning
machines as exhibiting a genuine social or behavioral
normativity, insofar as their activities can be seen as
exhibiting both ‘‘norm following’’ and ‘‘norm insti-
tuting’’ processes. The case of recommender systems
shall allow us to identify markers around which
these two processes seem to irremediably entangle
(e.g., the intractability, the randomness, and the
interactivity of algorithmic systems’ behaviors).

The conceptual focus of the paper does not dispense
us from indicating the empirical sources thanks to
which we ground our developments. The surveillance
system’s empirical material derives mainly from ethno-
graphic data collected between 2012–2015 and 2016–
2019 while participating in two Research and
Innovation projects (e.g., consortium meetings, inter-
views with engineers, laboratory visits). The neural net-
work’s empirical material is chiefly informed by
readings of original technical literature (Rosenblatt,
1962), contemporary technical literature (Bishop,
2006; Mitchell, 1997) and published historical accounts
(McCorduck, 1983; Crevier, 1993; Olazaran, 1993;
Pickering, 2010). The recommender system’s material
freely draws upon knowledge acquired along an empir-
ical study following a computational experiment on
recommender systems conducted between 2016 and
2017, as well as of the consultation of other more
traditional resources such as scientific literature and
technical blogs.

Socio-technical normativity and
surveillance system

The recent applications of machine learning techniques
in assisted and automated decision-making raise hopes
and concerns. On the one hand, there are hopes about
the possibility to have an informational environment
tailored to specific ends or the possibility to increase a
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firm’s commercial revenues. On the other hand, there
are concerns about the inconsiderate discriminations
machine learning results might conceal or the unprece-
dented possibilities for governing ushered in by these
techniques. Such concerns appear to be exacerbated by
the patent difficulties to hold beings accountable, either
because the responsibility of the decision is not attrib-
utable in any straightforward way, whether to an algo-
rithmic system or to a moral person, or because the
understanding of processes leading to case-specific deci-
sions is threadbare (Burrell, 2016).

We propose to address these key issues by identify-
ing sites that are crucial for engineers’ representations
and interventions as they negotiate encounters between
social imperatives and technical constraints (see Bijker
et al., 1987; McKenzie and Wajcman, 1985). Two such
sites have been identified: the metrics’ definition and the
databases’ collection.1 Each respectively enables engin-
eers to evaluate and design their algorithmic systems.
For the most part, our claims are grounded in empirical
inquiries we undertook over the last five years, within
different research groups. The material collected consists
of observations, discussions, interviews, and reports.
Thus, our first task is to describe the actions through
which engineers produce algorithmic systems following
specific socio-technical norms as well as the actions
through which engineers produce knowledge about
their algorithms’ behaviors. One case study in particular,
the ‘‘Privacy Preserving Protection Perimeter Project,’’
will illustrate the matters discussed.2

Funded by the European Commission between 2012
and 2015, this European ‘‘Research and Innovation’’
Project gathered a dozen private companies, research
universities, and public institutions with the aim of
designing a system able to automatically detect
threatening behaviors. This rather abstract endeavour
inevitably concealed multiple concrete technical chal-
lenges, the most predominant of which were the com-
bination of visual and thermal cameras with microwave
and acoustic sensors, as well as the development of
robust and efficient detection, tracking and classifica-
tion algorithms (i.e. working in real-time within uncon-
trolled environments). The consortium rapidly pinned
down two ‘‘use cases’’ that would put them to work: a
Swedish nuclear power plant (the Oskarshamns
Kraftgrupp AB) and a Swedish nuclear waste storage
facility (the Centralt mellanlager för använt kärn-
bränsle). The task impelled the engineers to undertake
a socio-technical inquiry enabling them to spell out the
various qualities with which users (i.e. the security
workers) expected the system to be endowed.3

Understandably, the security workers expected the
system to maintain the number of false alarms below
a certain threshold—otherwise the system would end
up disorganizing the perimeter surveillance instead of

organizing it. The project’s partners usually reframe the
requirement in slightly more technical terms: they want
to minimize the number of ‘‘false positives’’ (i.e. when
a behavior is mistaken as threatening) and ‘‘false
negatives’’ (i.e. when a behavior is mistaken as
nonthreatening). The engineers then translate the
socio-technical requirements into fairly simple and
intuitive mathematical expressions, called metrics,
that set standards for attributing numerical values to
different aspects of the system’s behaviors, aspects that
are deemed particularly important and that can
be empirically observed (Dewey, 1939; Porter, 1996).
The matter thus lies in understanding how the
human-based act of surveilling through categorization
can be transformed into a machine-based problem of
classification.

The very notions of ‘‘false positive’’ or ‘‘false nega-
tive’’ suppose that an algorithm-based classification can
be compared to, and overturned by, a human-based
classification. This human-based classification, acting
as the reference norm against which all machine-
based classifications are to be evaluated, is called the
ground truth dataset (Jaton, 2017). The ‘‘dataset’’ part
here refers to an ensemble of recorded scenes, each con-
taining as many numerical sequences as there are avail-
able sensors (i.e. visual videos, thermal frames, sound
recordings, and Doppler time-series). It provides the
system with concrete instances of an abstract classifica-
tion problem. These instances consist of actual scenes
the algorithm must assign to its ‘‘correct’’ category
(i.e. threatening or nonthreatening). The ‘‘ground
truth’’ part refers to the categories or labels which
humans—e.g. domain experts, computer scientists or
Amazon turkers—have attributed to each sequence. It
supplies the system with answers to the problem: the
algorithm now has an external check for assessing the
correctness of its classification.

How are these ground truth datasets concretely con-
stituted? Constituting relevant datasets for algorithmic
systems presents a genuine socio-technical challenge.
Building on their socio-technical inquiry—which
involves reading regulations, visiting sites, and inter-
viewing workers—the engineers envisioned scenarios
that would seek to encompass the range of threatening
and inoffensive behaviors the system was expected to
handle (e.g., a jogger running near the nuclear power
plant, a boat rapidly approaching the waste storage
facility, a truck driving perpendicular to one of the
site’s fences, etc.). The engineers then gathered on two
occasions, each time for about a week, to enact and rec-
ord the norms scripted in their scenarios (Figure 1). The
scene itself is worth visualizing: engineers awkwardly
running through an empty field sprinkled with cables
and sensors, mimicking the threatening or inoffensive
behaviors they want their algorithms to learn.
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Returning to their laboratories, they spent a consider-
able amount of time annotating each frame of each
sequence produced by each sensor, e.g. circling
moving bodies, labeling their behaviors, etc.4

With their metrics defined and their data collected,
engineers can, at last, train their algorithms, i.e. lead
them to embody socio-technical norms, and evaluate
them, i.e. measure relevant dimensions of their activ-
ities. The training process usually implemented first
requires engineers to load and initialize the algorithm
they wish to train (e.g., support-vector machine,
random forest, artificial neural networks, etc.) on
their laboratory’s computer clusters. They then run a
script which, as shown in Figure 2, (i) supplies the algo-
rithm with a batch of scenes which algorithms are asked
to classify (i.e. classification), (ii) compares the algo-
rithm’s guesses with the ground truth (e.g., evaluation),
and (iii) modifies a number of the algorithm’s param-
eters to improve the ways it reacts to specific videos (i.e.
correction)—before iterating back to (i) until the train-
ing dataset is emptied.

We have argued here—against growing claims that
contemporary machine learning practices and tech-
niques are progressively slipping through our
hands—that approaches combining empirical and crit-
ical perspectives are likely to provide us with the means
to productively engage with engineering practices, while
also opening up possibilities of critique and interven-
tion. The argument essentially rested on two claims. On

the one hand, the ‘‘metrics,’’ which mathematically
express the system’s socio-technical norms, equip
engineers with a way of assessing the comparative
values of different algorithms. On the other hand, the
‘‘ground truth dataset,’’ which comprises the actual and
possible instances the system is supposed to handle,
provides engineers with local norms for telling the algo-
rithm how to learn in specific instances. In both cases,
the norms are instituted by the engineers and are
expected to be followed by the machines. We believe
that by identifying two distinct sites where engineers

Figure 1. Personal sketch of the data collection field observed in United Kingdom in June 2014.

Figure 2. Personal sketch of a slide used by Robin Devooght

on June 2017.
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decisively mediate between social and technical con-
straints, we can productively transform the demands
we place on algorithmic systems and provide robust
indications as to where to intervene in critical cases in
which normative conflicts and problems arise.5

Technical normativity and artificial
neural networks

Therecentcrazesurrounding ‘‘machine’’or ‘‘deep’’ learn-
ing is usually explained in terms of ‘‘available data’’ (i.e.
infrastructural changes made data collection accessible),
‘‘algorithmic advances’’ (i.e. technical changesmadedata
processing possible) or ‘‘economic promises’’ (i.e. appli-
cations will make data particularly valuable). In focusing
on the algorithmic advances, the following paragraphs
propose to further explore three kinds of norms (imagi-
nal, mathematical, and material) algorithms manifest
whenever engineers attempt to endow them with specific
capacities.Thegenealogyofartificial neuralnetworks—a
subset of ‘‘machine learning’’ techniques whose applica-
tions may be seen in surveillance systems (see ‘‘Socio-
technical normativity and surveillance system’’ section)
aswell as recommender systems (see ‘‘Behavioral norma-
tivityandcollaborativefiltering’’ section)—will shed light
on the technical norms algorithms impose on engineering
practices.Beforeunfolding the technical transformations
artificial neural networks underwent, we will briefly
sketch their inception.

The earliest trace of the artificial neural network
scheme can be found in a technical report authored
by the American psychologist Frank Rosenblatt
(Rosenblatt, 1962) when based at the Cornell
Aeronautical Laboratory. By that time, several
researchers were interested in exploring the nature of
learning processes with the embryonic tools of auto-
mata theories. Distinctively, Rosenblatt decided to
address the problem of learning processes by both
investigating neurophysiological systems and construct-
ing intelligent machines. Artificial neural networks
would eventually emerge from these projects exploring
‘‘natural’’ and ‘‘artificial’’ learning, as the blueprint of a
machine capable of ‘‘perceiving’’ and ‘‘recognizing’’
visual patterns, as a machine capable of ‘‘learning’’ to
differentiate between geometrical forms. Thus, a neural
image of intelligence gradually turned into concrete
technical objects that would later be programmed for
the IBM 704 and hardwired as the MARK I.6

It has been convincingly argued that the singularity
of technical objects is best grasped through the schemes
describing their operations within different environ-
ments, rather than the uses to which they are subject
or the practicalities of their actualization (Simondon,
1958: 19–82). Thus, the singularity of artificial neural
networks lies in their technical scheme, rather than the

general regression, classification or clustering purposes
they serve, or their specific implementations in Python’s
Theano or TensorFlow libraries. A technical scheme
describes the parts composing the technical object and
relates their operations within the technical object’s
functioning (Polanyi, 1966: 38–40). Most schemes are
constructed from material traces (objects, descriptions,
diagrams, etc.) by technicians or historians interested in
thinking about, and intervening upon, specific technical
objects.

In the case of artificial neural networks, the scheme
always couples the algorithm to an environment
(Figure 3). In Rosenblatt’s design, light sensors allow
the network to capture signals from its environment
that end up being classified and light emitters enable
the network to display the results of its classifications.
Crucially, Rosenblatt articulated the artificial neural
network and its environment with a genuine feedback
mechanism, which would work as an experimental con-
troller for correcting the emitter’s output until it pro-
duced the desired response.

The artificial neural network’s scheme consists of
two main parts: neural units and synaptic edges (see
Figure 4). Each neural unit receives an incoming
signal and produces an outcoming value—the neurons

Figure 3. Diagram of artificial neural network within an

environment.

Figure 4. Diagram of the parts composing artificial neural

networks.
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generally contain numerical parameters (i.e. the bias)
and share an activation function. Each synaptic edge
connects two separate neural units—the synapses gen-
erally contain numerical parameters (i.e. the weight).
The question now is how these parts interact.

The first operation is prediction. It typically moves
from left to right and leaves the network unchanged
(see Figure 5). A cascade of operations combines the
input signal and the network’s parameters (i.e. syn-
apses’ weights and neurons’ biases) in order to produce
specific output values—depending on the problem,
the signal is classified as ‘‘triangle’’ or ‘‘circle,’’ as
‘‘threatening’’ or ‘‘nonthreatening,’’ etc.

The second operation is learning. It typically moves
from right to left and alters the network’s parameters
(see Figure 6). A cascade of operations compares the
outputs’ values (i.e. the datasequence the algorithm
classified) and the ground truth information (i.e. the
sequence data the engineer annotated) in order to
update and correct the network’s parameters (i.e. syn-
apses weights and neurons’ biases).

More than a mere description encompassing differ-
ent but related technical objects, this technical scheme
opens a field of possible manipulations for engineers,
ranging from minor modifications (How many neu-
rons? How many synapses? etc.) to major modifica-
tions, which lead to new lineages of artificial neural
networks (What if the neurons’ activation function
changes? What if peculiar synaptic connections are

allowed? etc.). Thus, technical schemes are always
both objectal and imaginal (Beaubois, 2015). If tech-
nical objects ‘‘have a life of their own,’’ to borrow
Ian Hacking’s (1983: 262–275) words, the problem
then lies in accounting for their schemes’ becoming,
as it mutates through but also resists, successive inven-
tions (Leroi-Gourhan, 1945; Simondon, 1958: 19–82).
The following paragraphs briefly sketch two other epi-
sodes neural networks went through between the early
1950s and the late 2000s, further illustrating this
dynamic of invention and resistance.

The experimental, mathematical, and commercial
successes of artificial neural networks rested upon
their ability to adjust synapses’ weights and neurons’
biases in order to recognize incoming patterns—i.e. to
learn to classify. However, the limitations of early arti-
ficial neural networks rapidly became apparent and
problematic (see Olazaran, 1993: 347–350). The
single-layer artificial neural networks proved incapable
of solving important families of problems, e.g. they
could not learn to recognize resized or disconnected
geometrical patterns (Rosenblatt, 1962: 67–70). On
the other hand, learning capacities of multilayer artifi-
cial neural networks appeared to depend more on
engineering skills than on their intrinsic qualities, e.g.
there existed no procedure guaranteeing that the learn-
ing would converge (see Olazaran, 1993: 396–406).
These combined limitations to algorithmic learning
capacities are traditionally seen as the onset of a signifi-
cant drop in financial and scientific interest in artificial
neural networks and artificial intelligence.

It was not before the mid-1980s that a satisfying
learning rule, named ‘‘backpropagation,’’ would
be identified for multilayer artificial neural net-
works—more or less simultaneously and independently
by Paul Werbos, David Rumelhart, and Yann Le Cunn
(Olazaran, 1993: 390–396). In a nutshell, the learning
algorithm measures the difference between the net-
work’s and the environment’s responses (i.e. error func-
tion); it then computes the relative contribution of each
synapse and neuron to the measured error (e.g., chain
rule’s partial derivatives); and finally updates the syn-
apses’ weights and neurons’ biases so as to reduce the
overall error. The learning problem is thus recast as an
optimization problem, in which the main objective is to
minimize classification errors. Backpropagation’s
mathematical scheme significantly extended artificial
neural networks’ problem-solving capacities.

Thereafter, in the late 1980s multilayer artificial
neural networks gave rise to interesting applications in
areas such as natural language processing, handwriting
recognition, etc. (Olazaran, 1993: 405–411). However,
the computational resources required during the learn-
ing phases quickly presented a significant impediment:
depending on the number of layers, on the size of the

Figure 5. Diagram of the prediction’s operation in artificial

neural networks.

Figure 6. Diagram of the learning’s operation in artificial neural

networks.
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datasets and on the power of the processors, it could
take up to several weeks to find weights and biases mini-
mizing classification errors. Thus, the applications using
artificial neural networks did not stand out from other
machine learning algorithms (e.g., ‘‘k-nearest neigh-
bors,’’ ‘‘random forests,’’ ‘‘support vector machines,’’
‘‘matrix factorization’’). Their more recent prolifer-
ation—often referred to as ‘‘deep learning’’—appears
to be intimately tied to advent and generalization of
massively parallel processing units.

In the late 1990s, Nvidia Corporation, one of the
largest hardware developers and manufacturers for
video games, equipped their graphic cards with speci-
fic-purpose processors. Contemporary video games typ-
ically involve large-scale mathematical transformations
that can be performed in parallel, e.g. the changing
values of the millions of pixels displayed on our screens
are usually processed simultaneously, instead of being
calculated sequentially. In the late 2000s, researchers in
computational statistics and machine learning revealed
the mathematical affinities shared by the graphical
operations in video games and the learning operations
in pattern recognition. Indeed, both involved countless
matricial calculations that could be distributed over
several processing cores and executed independently.
This rapid outline indicates the extent to which material
developments brought forth or actualized latent algo-
rithmic capacities.

Thus far, our approach has emphasized three kinds
of technical norms algorithms impose on engineering
practices. The first has to do with the algorithm’s imagi-
nal affordances in relation to the development of
technical systems—in this case, a single abstract repre-
sentation of neural processes brought about multiple
lineages of algorithms. The second deals with the math-
ematical properties of the algorithm’s structures and
operations—in this case, the invention of a convergent
algorithm significantly extended the abilities of multi-
layer artificial neural networks. The third bears on the
interplay between material constraints and computa-
tional possibilities—in this case, the advent of
Graphical Processing Units transformed the range of
problems algorithms can solve. Thus, the genealogy
of artificial neural networks led us not only to a con-
crete account of algorithmic processes, but more
importantly still, to a comprehensive understanding of
the imaginal, mathematical and material dynamics that
drive their technical becoming.

Behavioral normativity and
collaborative filtering

It is generally observed that computers blur an
entrenched ontological dichotomy between two kinds
of beings: living organisms and automated machines

(see Fox-Keller, 2008; 2009). Kant’s far-reaching con-
ception of self-organization famously epitomizes the
matter at stake: organisms’ norms are thought to be
intrinsic to their activities—organisms are, in this
sense, ‘‘norm-instituting’’ beings—and machines’
norms are thought to be extrinsic to their activities—-
machines are, in this sense, ‘‘norm-following’’ beings
(Barandiaran and Egbert, 2014). The most convincing
conceptual markers grounding this longstanding
dichotomy are generally to be found in the widely
shared reluctance to attribute ‘‘problems’’ and
‘‘errors’’ to behaviors exhibited by machines, com-
puters, and algorithms (Bates, 2014). Thus, technical
errors are usually thought to be rewritable either as
engineering failures or socio-technical problems (see,
respectively, Canguilhem, 1943; Turing, 1948).

Contemporary algorithmic systems appear to fur-
ther complicate any a priori partitions between dis-
tinctively organic and machinic behaviors. Indeed,
learning machines are, to a certain extent, capable of
modifying their structures so as to respond to modifi-
cations in their milieu without any specific human
interventions. In this regard, they are often seen as
exhibiting a form of behavioral plasticity, which was
long held to be distinctive of organic activity. The
minute operations followed by learning machines
and the effects they produce, currently remain
beyond satisfactory understandings. As such, there is
an aspect of what they do that is intractable, that lies
beyond our current capacities of prediction and con-
trol. This section further investigates these underdeter-
mined behaviors and suggests that both the human and
algorithmic aspects of machine learning systems need
to be approached as genuinely behaving, that is as
performing together norm-following and norm-insti-
tuting activities.

The case of collaborative filtering recommender sys-
tems deployed on commercial platforms such as
YouTube or Netflix can help us ground these consider-
ations (Seaver, 2018). In a nutshell, these systems seek
to foster unprecedented interactions between items and
users by looking at past interactions between similar
items and users. Practically speaking, the metrics
deployed for evaluating the performances of such sys-
tems generally attempt to measure different aspects of
user engagement and the data collected for training
these algorithmic models largely consists of user inter-
action histories. The concrete processes, which are to a
large extent unscripted, remain difficult to explain, even
retrospectively, for the engineers who designed the
algorithms. The dynamics of imitation and variation
performed on these platforms need to be conceived,
we argue, as a social activity, involving an interactive
and iterative process between the users’ and the algo-
rithms’ behaviors.7
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The distinction between norm-instituting and norm-
following can be further understood as a difference
between two processes of determination. Most technical
entities, it has been argued, exhibit a relative ‘‘margin of
indetermination’’ that makes them more or less recep-
tive to ‘‘external information’’ and responsive in terms
of ‘‘internal transformations’’ (see Simondon, 1958:
134–152), e.g. the progressive wear and tear of a bolt
connecting metal parts allows for their mutual adjust-
ment, an engine’s governor constantly regulates the
train’s speed despite changes of load and pressure, a
warehouse logistically adapts to a changing book
order, a recommender system responds to newly
received interactions. The distinction between norm-
instituting and norm-following can thus be reframed
as a distinction between two kinds of determination: a
determination will be said ‘‘convergent’’ or ‘‘divergent’’
depending on whether it restricts or expands the behav-
ioral variability of a technical entity. Both empirically
and conceptually speaking, the difficulty thus lies in
being able to account for the divergent determinations
of certain machine learning processes.

In this light, the singularity of machine learning
applications should be understood in terms of the rela-
tive significance of the margin of indetermination
exhibited. Indeed, in most machine learning applica-
tions, the behavior of the algorithmic system (i.e. the
specific predictions displayed) may be periodically trans-
formed (i.e. the values of the model are updated)
depending on the relevant incoming information (i.e.
particular sets of data). By and large, engineering work
is dedicated to restraining the recommender system’s
variations—instituting metrics, defining error functions,
cleaning datasets—and aligning them with the compa-
nies’ interests. On the one hand, the determinations of
learning may be seen as converging toward rather spe-
cific pre-instituted norms. However, the actual learning
process, as Adrian Mackenzie (2018: 82) has argued, has
more to do with stochastic function-finding than with
deterministic function-execution—the resulting model
corresponds to one among many possible configurations
(see also Mackenzie 2015). Thus, and on the other hand,
the concrete determinations of the system’s behavior can
hardly be seen as converging toward any pre-instituted
norms.8

Let us take a closer look at the actual processes
that unfold when producing recommendations.
Collaborative filtering techniques typically seek to
achieve a delicate balance between sameness (always
recommending similar items) and difference (only rec-
ommending different items) solely by looking at and
drawing on patterns of interactions between users and
items. The collaborative machines—that may well be
instantiated by many different techniques, such as k-
nearest neighbors, matrix factorization, neural

networks—are usually interpreted by recommendation
engineers as capable of producing models that represent
actual relations and suggest potential relations between
users and items. More concretely, each learning step
supposes that the error function (also called loss or
objective function) measures the recommendation’s
quality and that the correction algorithm (e.g., back-
propagation) adjusts the model’s parameters accord-
ingly. We can now, with these developments in mind,
rework the problem with which we opened the section:
error as a marker for thinking the human–machine
distinction.

If, indeed, the very process of learning rests on the
possibility of erring (Vygotsky, 1978), we propose, fol-
lowing David Bates (Bates and Bassiri, 2016; see also
Malabou, 2017), to seize both entangled senses in which
erring may be understood: erring as ‘‘behaving in unex-
pected ways’’ (i.e. errancy), and erring as ‘‘susceptible
of being corrected’’ (i.e. error). In both cases, erring
supposes that a relation between an individual and an
environment be experienced as problematic, that the
norms instantiated within behavioral performances
are experienced as only certain ones among many pos-
sible others. The passage from error to errancy depends
on recognizing social activity as open-ended enough for
error to appear not only as the mere negation of a
norm, but rather as the affirmation of a different
norm. We would like to suggest, here, that a more cau-
tious look at learning processes could help us frame
these algorithmic systems as erring within a broader
social activity, in this instance: the algorithmic produc-
tion of cultural tastes.

Two remarks should suffice here to pin down what is
at stake. First, the overall learning process is open-
ended: although each learning step stops when the
model’s parameters minimize error and overfitting,
the overall learning process consists of an indefinite
sequence of learning steps, which are periodically
picked up again once there is enough fresh data from
incoming interactions. Second, the recommendations
are ‘‘moving targets’’ (Hacking, 1986): the learning pro-
cess is shaped by interactions as much as it shapes inter-
actions, i.e. recommender systems learn and produce
interactions. We therefore contend that the iterativity
and interactivity of recommending activities are
grounds for conceiving classification operations per-
formed by recommender systems as targeting both cer-
tain user behaviors as well as certain algorithmic
predictions. The dynamic of these ‘‘looping kinds’’
(Hacking, 1986), brings recommendation, as a social
activity, closer to errancy than error. Indeed, what
would it even mean from this perspective to produce
a false recommendation?

The algorithmic system can therefore be seen as
genuinely behaving, that is as performing an
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algorithmic activity exhibiting its own form of norma-
tivity. The behavioral normativity, once the notion of
behavior is released from individualized moorings and
reconnected with the social activity within which it
unfolds, can be productively conceived as a dynamic
of norm following and norm institution—rather than
the instantiation of social norms within technical
ensembles (i.e. socio-technical normativity) or the
instantiation of technical norms through acts of inven-
tion (i.e. technical normativity). In this specific case, the
recommender system needs to be conceived as a social
partner behaving within a determined social activity:
their behaviors bear social significance and affect the
value of other behaviors.

Thus, the notion of behavioral normativity leads us
to reconsider how the redistributions of norm-following
and norm-instituting behaviors between humans and
machines actively reshape social activities. We might
ask then: ‘‘What is learning and where is learning
occurring within the behavioral distributions of a
given activity?’’ In doing so, the primary focus or
locus of analysis is productively displaced toward the
unfolding of social activities, thereby indefinitely
deferring the quest to reveal the ‘‘true norms’’ that
inform algorithmic systems (e.g., ‘‘we are manipulated
by algorithms’’) or social systems (e.g., ‘‘algorithms
are biased’’). We can now better attend to what it
means and why it matters for machine learning algo-
rithms to behave in unforeseen and unexpected ways,
thus opening the prospect that they become sites of
normative invention. We hope, in this way, to have
contributed to the concerted efforts that need to be
made to integrate algorithmic behaviors into the field
of action it analyzes by offering conceptual and meth-
odological tools for claiming their effects. Our conten-
tion is that one way of addressing this challenge lies in
showing how this normativity makes sense within
culture.

The tension experienced by most people when con-
fronted with technical systems can, in part, be under-
stood in terms of the difficulties they have in
experiencing and making sense of how, where, and
when machine behaviors perform with ours. The cul-
tural images of technical systems have traditionally
allowed us to stabilize the perceptive and motor antici-
pations determining our relationships with them,
e.g. the individual body performing with a simple tool
or the industrial ensemble organizing human and
machine labor (Simondon, 1965-1966; Leroi-Gourhan,
1965). The problems, in the case of learning machines,
are tied to the variable distributions of human and
machines behaviors (Collins, 1990: 14) and to the
unfamiliar ability algorithmic systems have of institut-
ing norms. The tension can thus in part be reframed as
the problem of understanding these behaviors in

relation to the social activities within which they
unfold and that they take part in shaping.

The concept of behavioral normativity foregrounds
the importance of social activity and the afferent
margin of indetermination it allows behaviors to
inform. If there is no room left for error, then all behav-
iors that do not execute or follow the established, pro-
grammed norm will be disregarded or repressed as
useless or inefficient. If, on the other hand, those behav-
iors that do not perform as expected are attributed
value and attended to, they can participate in institut-
ing a new norm-following dynamic. Thereby, machine
learning forces us to reconsider long standing divides
between machines’ and organisms’ behaviors, between
those behaviors that repeat and those that invent
norms. Our conceptual proposition invites alternative
and more demanding normative expectations to bear
on engineering and design practices whereby the
margin of indetermination of an algorithmic system
would be increased rather than reduced.

Conclusion

The overall aim of this paper was to approach algorith-
mic normativities in a different light, with different
questions in mind, with different norms in sight.

The first investigation into socio-technical normativ-
ity showed how engineering practices come to stabilize
and embed norms within certain systems by setting up
plans or programs for learning machines to execute
(metrics, ground truth dataset, optimization function).
The socio-technical perspective, although a necessary
starting point, is insufficient if taken in and of itself.
Indeed, it demands that we be able to define what is
‘‘social’’ and what is ‘‘technical’’ within a given system,
and how their given normativities come to be
entangled. In this light, we proposed to qualify social
and technical normativities in terms of operations they
perform, rather than properties they possess.

This led us to look at different algorithmic systems
from the standpoints both of their technical operations
and their social or behavioral activities. The section on
notion of technical normativity sketched the mutations
of an algorithm’s technical scheme and exposed how
its norms both induce and resist invention, thereby
granting technical objects imaginal, mathematical or
material consistencies. The final section on behavioral
normativity allowed us to consider certain conditions
(indetermination, divergence, errancy) under which an
algorithm can be seen as taking part in the norm-fol-
lowing and norm-instituting dynamics that characterize
social activities.

This normative pluralism can help understand how
contemporary algorithmic systems, comprised of mul-
tiple structures and operations, simultaneously fulfill
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engineering aims, express technical resistances and par-
ticipate in ongoing social processes. Generally speaking
we can advance that:

. the aims engineers pursue always depend upon cer-
tain algorithmic capacities, in this sense algorithmic
techniques normalize engineering practices (i.e. the
objective function always depends on an efficient
learning rule);

. the socio-technical system’s behavior is subject to
engineering aims that normalize its learning activity
(i.e. the metrics and the ground truth datasets deter-
mine what counts as an error);

. the algorithmic system’s learning processes unfold
genuine norm instituting behaviors (i.e. the system’s
outputs periodically affect the very activities that
have to be learned).

The value of our approach lies in its ability to pro-
vide a nuanced account of what is too often presented
as one opaque, impenetrable or ethereal system.
Algorithmic systems must instead be seen, we argue,
as inhabited by normative tensions—between technical,
socio-technical, and behavioral normativities. We
sketched this pluralism with specific practical and the-
oretical problems in mind. No doubt others would be
led to explore different normativities pervading algo-
rithmic systems. Our effort has largely consisted in
showing that behind each ‘‘norm-following’’ instance
there is an institution, and conversely, that every insti-
tution requires its norms to be performed, to be played
out, even at the risk of them being transformed by their
very performance.
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Notes

1. We do not claim that these sites are the only sites where

social and technical normativity are entangled—one could

also consider: (i) the choice of the relevant features (i.e.

that select and neglect what counts as a relevant informa-

tion, such as speed, trajectories or colors); (ii) the choice of

the objective function (that determine the learning by pro-

viding a computational metric); (iii) the choice of the

machine learning algorithm (that constrains the kind of

things to be learned, such as sets or series).
2. The two inquiries, particularly relevant to the argument

presented here, were led in the course of another two

European ‘‘Research and Innovation’’ initiative, respect-

ively, titled ‘‘Privacy Preserving Protection Perimeter

Project’’ (2013–2016) and ‘‘Pervasive and User Focused

Biometrics Border Project’’ (2016–2019). The data col-

lected, during these projects, consisted of minutes of con-

sortium meeting, attendance to demonstrations, as well as

30 semi-directed interviews with engineering partners.

Grosman J (2018) Ethical and social issues, ‘‘Technical

Report in the frame Pervasive and User Focused

Biometrics Border Project’’ (PROTECT). The most read-

able general introduction to machine learning is undoubt-

edly Mitchell (1997). Bishop’s (2006) textbook is also an

invaluable resource. The course given by Andrew Ng

(2011) at Stanford is an equally good place to start.

3. To give a more concrete sense of the specific challenges

that need to be overcome: the system needed to remain

indifferent to weather variations (e.g., Swedish snow,

fog, and sun) as well as to the surrounding fauna (e.g.,

squirrels, rabbits, foxes, moose, etc.).
4. The ‘‘data collection’’ happens to be of tremendous

importance not only, from the perspective of the power

plant and waste facility’s staffs, for getting the system to

work correctly, but also, from the perspective of engineers

working in computer vision, for getting standard datasets

against which to compare their algorithms—mainly: pro-

viding benchmarks and organizing competitions.
5. Considering just one short example showing some conse-

quences of our approach to the so-called opacity and

unaccountability of algorithmic systems, the problems of

algorithmic discrimination can be constructively reap-

praised as the problems of (i) characterizing the suspected

social discrimination, (ii) constructing metrics likely of

measuring such discrimination (and ruling out inconsider-

ate algorithms), and (iii) spelling out requirements that

datasets must meet to avoid such discriminative

consequences.
6. The empirical material concerning the genesis of neural

networks builds on an extensive reading of the existing

historical literature: McCurdock (1983), Olazaran (1993),

Kay (2001), Pickering (2010), Cardon et al. (2018) as well
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as selected readings of the primary literature: Rosenblatt

(1962). The contemporary literature provides valuable

technical details, see for example the short presentation

in Mitchell (1997), the more substantial treatment in

Bishop (1995) and the online course given by Geoffrey

Hinton for Toronto University dedicated to neural net-

work and available on the Coursera platform in 2012.

For a more general overview of the period, see for instance

Heims (1991) and Edwards (1996).
7. The most relevant textbooks are Francesco Ricci, Lior

Rokach, Bracha Shapira and Paul B. Kantor (2011) and

Aggarwal (2016). The annual proceedings of the ACM

conference on Recommender Systems provide an invalu-

able overview of the public and private research conducted

in recommender systems. Netflix’s or Spotify’s technical

blogs, as well as the less official blogs of their employees,

give invaluable insights into recommendation practices.

The account is also informed by an empirical inquiry, led

between 2016 and 2018, during which we documented a

series of computational experiments attempting to uncover

the capacities of recurrent neural networks for predicting

sequence of interactions for the offline version of a collab-

orative filtering based recommender problem.

8. This argument rests on the rather reasonable assumption

that the empirical learning of machines cannot be com-

pletely reduced to the mathematical convergence of a func-

tion, the role of which is to find the extremal values of

another function—minimization in the case of what is

called error or loss function, maximization in the case of

what is called objective function.
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Original Research Article

Data ratcheting and data-driven
organisational change in transport

Liam Heaphy

Abstract

This article explores the process by which intelligent transport system technologies have further advanced a data-

driven culture in public transport and traffic control. Based on 12 interviews with transport engineers and field-

work visits to three control rooms, it follows the implementation of Real-Time Passenger Information in Dublin and

the various technologies on which it is dependent. It uses the concept of ‘data ratcheting’ to describe how a new data-

driven rational order supplants a gradualist, conservative ethos, creating technological dependencies that pressure

organisations to take control of their own data and curate accessibility to outside organisations. It is argued that

the implementation of Real-Time Passenger Information forms part of a changing landscape of urban technologies

as cities move from a phase of opening data silos and expanded communication across departments and with citizens

towards one in which new streams of digital data are recognised for their value in stabilising novel forms of city

administration.

Keywords

Intelligent transport systems, real-time information, smart city, Big Data, organisational change

Introduction

There is a quiet ‘revolution’ underway in the transport
sector as intelligent transport systems (ITS) technolo-
gies are used to increase efficiencies and integrate urban
functions, through an alliance of well-established trans-
port technology companies in partnership with city
engineers and technologists. ITS originates in the con-
text of managing and coordinating road use, but inter-
faces with air, rail and water systems (Williams, 2008:
3). While discursively enveloped in the promise of the
smart city in recent marketing programmes such as that
of Dublin (Coletta et al., 2018a; Kitchin et al., 2018),
the history of ITS extends back further over several
decades with the development of CCTV-supplied traffic
control rooms, junction controller software, and sche-
duling systems for public transport. Therefore, it pro-
vides a counter-example to the creation of new urban
corporate districts branded as ‘smart’ (Wiig, 2019), or
reductive concepts of a universal urban science
(Shelton, 2017), inasmuch as it accounts for a gradual
evolution of ‘smart’ or intelligent technologies within a
specific sector.

ITS forms the basis for a longitudinal study on how
data-driven organisational control is being enacted in
our cities, drawing attention to the concept of ‘data-
ratcheting’ to show how these data-driven changes are
iterative and leveraged off previous innovations. The
evolution of ITS is dependent on long-standing com-
mitments to shared infrastructure, and indicative of a
shift to increasing autonomous management of public
transport and traffic while overseen by human oper-
ators. The article seeks to contribute to the theoretical
literature on standards and Big Data by building an
explanatory account of data-driven organisational
change based on a case study on the deployment of
Real-Time Passenger Information (henceforth RTPI)
in Dublin. It focuses primarily on the implementation
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of RTPI on bus services and considers the wide array of
technologies on which RTPI is reliant, including loca-
tional technologies, telecommunications and informa-
tion standards.

The following section reviews existing theory on data
infrastructures in relation to its bearing for understand-
ing the deployment of new technologies. This is fol-
lowed by a description of the fieldwork and methods
underpinning the empirical content. The subsequent
three empirical sections then detail the deployment
of RTPI in Dublin, largely in temporal order and iden-
tifying the various phases of development. This
covers earlier trials, the negotiation of common infor-
mation standards, forms of data-driven behavioural or
procedural change, and the consolidation of oper-
ational intelligence technologies. The penultimate sec-
tion further discusses data ratcheting in relation
to procedural and organisational change. The conclu-
sion then discusses the evolution of data-driven
change in transport and speculates on further research
directions.

Combining studies of the mundane with
data assemblages

The study of infrastructure has covered both epic trans-
formations, such as the electrification of Western socie-
ties (Hughes, 1993) and the mundane ‘boring things’
(Star, 1999), such as the file folder system for comput-
ing and its consequences for systems management
(Yates, 1993). In the former, Hughes’ panoramic view
of large technical systems repurposes the military term
‘reverse salient’, pertaining to line formation, to define
where blockages in one domain may be cleared by pro-
gress in another. Infrastructure becomes a means of
analysing how systems travel and extend into local con-
texts, and a basis for forming concepts to explore their
many contingencies and the development of common
standards of information exchange.

Infrastructure studies blend the archival patience of
the historian with the attentive eye of the ethnographer
and require a predilection for interrogating technical
reports and manuals. In this vein, Edwards (2010)
covers the pioneering work of climate observers in the
19th and 20th centuries and the process of reanalysis,
where scientists reconcile data from multiple sources
into uniform global datasets. This large temporal
scale opens up concepts such as ‘infrastructural inver-
sion’, where ‘historical changes frequently ascribed to
some spectacular product of an age are frequently more
a feature of an infrastructure permitting the develop-
ment of that product’ (Star and Bowker, 2006: 233). It
also facilitates the analysis of positive and negative
externalities associated with standards, such as
Meinel’s historical study (2004) on the contingencies

of the field of microbiology on particular visual and
mechanical model kits.

The digital revolution has expanded the remit of
infrastructure studies. Star and Ruhleder’s (2001) sem-
inal study on the creation of a unified, computer-based
and networked worm system for scientists examines the
frictions that occur around arcane choices of network-
ing technologies or operating system, providing a useful
distinction between first-, second- and third-order
issues. First-order issues concern direct matter-of-fact
phenomena and can be solved with existing resources
and processes, such as finding and enabling a software
option. Second-order issues reflect unforeseen context-
ual effects, such as the choice of one suite of procedures
or standards over another and the path dependencies
that result. Third-order issues are inherently political,
involving ethical frameworks, theoretical paradigms
and schools of thought. They may arise from combin-
ations of first- and second-order issues, such as where
an awareness emerges that legacy technologies are con-
straining accessibility, opening the path towards more
fundamental questions on the collective good.

Following Kitchin (2014a), we can associate the cen-
turies-old Big Data of climate science referred to above
with volume and variety. However, it is with ITS and
similar forms of sensor-fed, large-scale digital networks
and models that we can see the increasing importance
of velocity (i.e. real-time or close to it). ITS relies on
complex assemblages of information networks, human
engineers and controllers, transport policies, road-side
sensors, in-vehicle computers and global positioning
systems to choreograph in real-time an increasingly
wide array of objects in space. It is part of a shift
towards data-driven design and maintenance of urban
transport systems, drawn into discourse on the ‘smart
city’ through including ‘smart travel’ or transport in
funding programmes and established practices of clas-
sifying smart technologies (Giffinger and Pichler-
Milanović, 2007), as well as through the inroads into
transport sought by data analytics companies.

Calls have been made to study actually existing
‘smart cities’ (Coletta et al., 2018a; Shelton et al.,
2015), and engage with software by analysing critically
how data interact with urban space and society
(Kitchin and Dodge, 2011). This can take the form of
following the data and ‘attending to the sociotechnical
fuzziness of data as it falls between epistemological
problems, material infrastructure and organizational
concerns’ (Coletta et al., 2018b: 6). It implies looking
to the ‘proxies’ of data, where data flows are trans-
formed, bifurcated, or collated; whether that be
errors and anomalies in sensor networks and transport
systems (Reed, 2018; Reed and Webster, 2010), or
the rollout of sophisticated city-wide projects in
partnership with industry giants (Shapiro, 2018).
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Furthermore, it requires attention to the power rela-
tions and values implied as these data are recruited
into new modes of data-driven urban governance.

Shelton (2017) shows how Big Data-inspired visual-
isations of vacant lots may depoliticise ethnic and social
inequalities, normalising the principles by which such
inequalities are largely left in place. Consequently, it is
useful to account for the totality of politics, data, values
and materialities that underwrite such visualisations or
policy tools. Kitchin and Lauriault (2014: 1) advance
the concept of a ‘data assemblage that encompasses all
of the technological, political, social and economic
apparatuses and elements that constitutes and frames
the generation, circulation and deployment of data’. It
functions as a means of expanding discussion to how
data reshape society, and resultantly, how data-driven
change leads to further developments and the creation
of new path dependencies. This aids in drawing atten-
tion to the politics of Big Data (Shelton, 2017), the
rights of citizens to the digital city (Foth et al., 2015),
and data literacy (Gray et al., 2018).

This article takes its cue from data assemblages as a
means of exploring how urban datafication reshapes
urban management and control. Kitchin (2014b: 25)
pursues data assemblages in relation to how data can
usher in new regimes of data-driven societal control,
tabling a broad array of constituent factors. The fram-
ing of RTPI as a data assemblage opens discussion into
how ‘each apparatus and their elements frame what is
possible, desirable and expected of data’, including gov-
ernmentalities, materialities, practices and systems of
thought. This article is particularly concerned with
procedure; how transport systems have integrated
data-driven technologies into their internal modes of
organisation and coordination rather than their chan-
ging relationship to passengers and broader society.

Modern intelligent transport technologies, it is main-
tained, represent an instance of urban datafication and
consolidation, as organisations experiment with Big
Data in the interests of increased efficiency and per-
formance. This process of urban datafication can be
described with recourse to three translations. Firstly,
data expansionism occurs through the deployment of
sensing technologies and ICT infrastructure to create
new datasets. Concepts from infrastructural studies
such as ‘reverse salients’ help explain how data plat-
forms come into being as new technologies facilitate
change and transport authorities and providers build
necessary infrastructure. Secondly, as new data sources
become available, data experimentalism ensues as a
range of actors compete to create new services and
products. Finally, a third phase of operational consoli-
dation can be delineated, as new forms of data-driven
behavioural change, based on the dynamic treatment of
real-time data, are encoded into procedures and

organisational technologies. A continual negotiation
and policing of standards is necessary to ensure data-
driven processes can function to a required degree of
resilience, for which the study of first-, second-,
and third-order issues aid in our comprehension of
how this occurs on different levels. Finally, the titu-
lar concept of data ratcheting functions as a creative
interlacing of these final and overlapping phases as
new functions, products and services are discovered
and implemented in a context of data-driven
rationalisation.

The fieldwork introduced below corresponds to
recent phases of data expansionism and operational
consolidation. However, the implementation of RTPI
in Dublin, particularly on bus services, evidences the
long infrastructural timelines of ITS. Therefore, the sec-
tion thereafter covers this initial period from the 1970s
until the near-present, before then considering how
RTPI standards were negotiated and how data-driven
organisational change ensued.

Fieldwork and methods

Dublin’s RTPI system covers Bus Átha Cliath (hence-
forth Dublin Bus), Bus Éireann (a public national
coach company), Luas (tram system), and Iarnród
Éireann (the public national railway company).
Dublin Bus registered 136.3 million journeys in 2017,
as compared to 37.6m for the Luas, and 45.5m for
Iarnród Éireann nationwide (NTA, 2018: 201). The
focus of research reflects the operational area of
Dublin Bus, corresponding to the Greater Dublin
Area (GDA). The GDA comprises four predominantly
urban local authorities with a combined population of
1,347,359 in the 2016 census and three surrounding
rural counties. There is no corresponding transport
authority for the GDA. Instead, the national scale
tends to be the favoured tier for integrated services
across local authorities (Coletta et al., 2018a: 4). The
National Transport Authority (NTA) is responsible for
both national and regional transport planning includ-
ing the GDA.

The choice of the fieldwork site and the topic of
transport technology reflect a wider objective of track-
ing Dublin’s self-promotion as a ‘smart city’ as part of a
large multi-researcher project. It forms one of several
complementary case studies on how smart technologies
and Big Data are transforming urban life (cf. Cardullo
and Kitchin, 2018; Coletta et al., 2018a; Perng and
Kitchin, 2016). The empirical research presented in
this article draws on 12 semi-structured interviews
derived from two related fieldwork datasets. The first
six are a subset are drawn from a larger set of 77 inter-
views conducted with government and city workers,
corporations, and other stakeholders on Dublin’s
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emerging smart city strategy in 2015/2016. These
include five transport engineers from local and national
government and one transport consultant, all of whom
discuss ITS in relation to traffic control, road design
and maintenance, and public transport reform. The
remaining six are part of subsequent in-depth studies
with transport operators (Bus Éireann, Dublin Bus,
Luas) and traffic control room engineers (Dublin City
Council) on interrelated RTPI and traffic management
technologies in 2016/2017.

Interviews were conducted in situ in back offices
(NTA, Luas, Bus Éireann) and control rooms (Dublin
Bus and the traffic control rooms of Dublin City
Council and South Dublin County Council).
Observational fieldnotes from visits to the control
rooms and impromptu conservations with operators
provided additional perspectives. Interviewees were
asked to explain their roles, the deployment of RTPI
in their organisation and its relationship to other tech-
nologies, decisions on standards and their implementa-
tion, and their coordination with other transport
providers and regulators. The insights offered by par-
ticipants were supplemented by reports and secondary
literature to inform the longer timeline of ITS in
Dublin.

Four decades of pilots in Dublin

In Dublin as elsewhere, the development of ITS can be
seen to be dependent on a supporting infrastructure
which allows innovation to occur over multi-decadal
timescales. There were many instances of transport
innovation over the last few decades, but without suf-
ficient coordination between the relevant bodies, they
failed to scale up or attract sufficient continuity support
from national or local government.

RTPI allows public transport users to consult the
predicted departure time of services and determine the
most efficient mode of travel, based on the latest infor-
mation on traffic delays, interruptions and capacity.
RTPI improves perceived reliability as passengers rate
their transport providers more highly if they are kept
informed of how the system is performing and can
make more sophisticated information-driven travel
decisions (Caulfield and O’Mahony, 2009; Watkins
et al., 2011). Although transport operators can fall
back on scheduled timetables and rosters to provide
basic transport infrastructure, the higher levels of ser-
vice attained with transport technologies are critically
dependent on software and automation.1

RTPI is dependent on automatic vehicle monitoring
(AVM), a technology which reports real-time informa-
tion on the location of vehicles back to a central server.
AVM dates back to the late 1960s, with trials in the
United States of America and other nations to develop

radio-based triangulation systems to an acceptable
degree of accuracy and temporal resolution. It was
tested for select bus routes in urban areas throughout
the 1970s with varying degrees of success (Roth, 1977).
For mass transport systems, AVM promised a more
efficient and less costly alternative to the ‘point men’,
employed to record stop times of buses and inform
schedule adherence and redesign (Roth, 1977). These
elemental technologies of control contribute towards
tackling the perennial issues of buses running ahead
of schedule (understood to be considerably worse
than running behind, as it causes disruption to drivers
further back down the line and frustration to patrons)
and maintaining even headway (where buses are dis-
tributed evenly along the route). It was recognised in
the late 1970s that AVM could be used to provide both
frequent and reliable service information to passengers
and also integrate with traffic control systems to give
signal priority to oncoming public transport vehicles
running behind schedule (Symes, 1980: 237). Dublin
Bus first trialled AVM in the 1970s using odometers
fitted on buses that reported by radio to a central
server every 45 seconds, subsequently rolled out to all
bus depots by 1981. In 1985–1987, Dublin Bus also
trialled traffic prioritisation based on a combination
of infrared transponders installed on buses and road-
side detectors. This was linked to the AVM system, but
funding was not available to continue a successful pilot.
The AVM system continued until the end of its useful
life in the 1990s but was not replaced, with controllers
reverting to radio contact with drivers (World
Bank, 2011).

In 2001, a second trial of next-generation GPS-based
Automatic Vehicle Location (AVL) called ‘Q-time’ was
conducted on select Dublin Bus routes, and for the first
time, RTPI signage was fitted (Caulfield and
O’Mahony, 2004). This trial continued for three years
during a period in which there was perennial threats (or
opportunities) to liberalise the transport sector. The
Irish Minister for Transport announced in 2002 that
25% of bus routes in the capital were to be opened to
private competition, while also proposing the develop-
ment of a ‘Dublin Land Use and Transport Authority’
in line with best practice across the European Union
(Caulfield and O’Mahony, 2003: 2). Privatisation in
transport is associated with market deficiencies includ-
ing the dumping of non-profitable but socially
important routes, and fare-creep on monopolised
well-transited routes. Observing the UK experience,
further inefficiencies may include competing companies
serving the same routes, multiple and incompatible
ticketing options, and the duplication of management
and control resources (cf. Sørensen and Gudmundsson,
2010). Privatisation is therefore often accompanied
with a parallel investment in new regulatory structures
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to mitigate these issues while proceeding on the ideo-
logical basis of lowering public investment costs and
mitigating militant trade unionism (Gomez-Ibanez
and Meyer, 2011).

In this context of uncertainty and privatisation in the
early 2000s, Dublin Bus did not attain funding for a
city-wide implementation of their Q-time pilot.
Therefore, by the time RTPI was finally funded and
implemented city-wide on buses from 2009 to 2011, it
was a mature and largely consolidated technology com-
monplace in European cities like Gothenburg and
Helsinki since the mid to late 1990s. Acting as a reverse
salient, the arrival of GPS was making locational tech-
nologies part of everyday experience for both transport
operators and personal devices (Kitchin, 2014b: 58),
and could overcome technology resistances experienced
during the first 1980s generation of AVM. The first
service-wide implementation of RTPI in Dublin was
for a new tram service in 2004, Luas, run on a franchise
basis by Veolia, and before the bus implementation was
finalised. It shares road-space with private vehicles for
which it gets priority when approaching junctions.
Sensors are placed at intervals of 100m or more
which gather information from transponders on trams
and send it to a central server and operations room.

As evident in the timeline below (Figure 1), Dublin
Bus had accumulated or retained experience with RTPI
through successive trials by the time of its definitive
roll-out of AVL, in partnership with a specialist
German transport technology company, INIT.
A Dublin Transportation Office had been created in
1995 to put into place a transport strategy for the city
region under the remit of the Department of Transport.
It established a committee to oversee the implementa-
tion of RTPI in 2001, and contracted Atkins consult-
ants in 2002 to create a general strategy. The report,
published in 2006, noted the inconsistencies of informa-
tion provision between services and the absence of an
overarching mechanism to ensure holistic planning of
both physical and informational infrastructure. It
strongly recommended the creation of a specific
public transport information office ‘with responsibility
for collecting data, publishing information and setting
standards’, ‘the development and marketing of a public
transport ‘‘brand’’ common to all modes and operators
that the public can identify with, trust and rely upon’,
and ‘the development of a set of agreements and pro-
cesses governing agency participation’ (Atkins, 2006: iv).
The mooted idea of a land use and transport authority
materialised in the form of the NTA, which fulfils the
remit suggested in the report at the national scale. It also
incorporated the Dublin Transportation Office and its
data-modelling team (interview DSC27, NTA).

As the NTA was not created until 2008, ‘it was
agreed at the time [that the implementation of RTPI

was initiated] that Dublin City Council was a better
vehicle to actually procure the RTPI and subsequently
that project and contract moved over to the NTA’
(interview DSC27, NTA). The NTA have adopted the
infrastructure created by Dublin City Council and
added further measures to ensure its resilience, while
also extending RTPI and the Leap smart travel card
to other cities and towns in Ireland.

The AVL data from services are fed back into a
central RTPI server, and subsequently into roadside
display panels via cellular communication or GSM,
with data hosted in two data centres in the Dublin
Docklands with various failsafe mechanisms. This
informs two official NTA apps (RealTime Ireland and
Journey Planner) that cover all services, as well as sev-
eral operator apps (Iarnród Éireann and Luas). RTPI
data are available via a public API to researchers and
commercial developers under a CCBY 4.0 license.
Programmers can write their own queries in XML
(extended mark-up language) or JSON (JavaScript
object notation) to pull down specific information,
which can then be pushed into custom-made displays
for specific purposes.

These developments have given rise to two forms of
data expansionism: that within and between the core
operators themselves and largely based on AVL,
including scheduling, data analytics and traffic priori-
tisation; and that permitted by the API, for research
and commercial usage. The next section details how
RTPI standards are managed between operators and
the regulator in order to support this two-tier ecosys-
tem, while the final empirical section considers how
AVL and RTPI are supporting the operational consoli-
dation of data-driven functionalities.

Negotiating and maintaining data
standards

It was the responsibility of Dublin City Council, and
then the NTA, to create consistency of information
provision, ensure infrastructure compatibility, and
develop a common brand with its accompanying clear
aesthetic. This involved the redesign of bus-stops, the
rollout of RTPI displays for multiple operators, the
creation of an efficient and reliable back-end and tele-
communications system, and the policing of informa-
tion systems to ensure interoperability between
transport providers. This required a co-constitutive
development of procedures encompassing both human
operators and software, where the latter is understood
as partial or fully automated procedural systems.

Anomalies and breakdowns make infrastructure vis-
ible (Star and Ruhleder, 2001), and their resolution
allows us to follow how standards are negotiated and
stabilised. Such is the case with ‘ghost buses’, where
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services shown in RTPI fail to materialise. This anom-
aly provides insight into the various orders of issues
encountered and their relationship to organisational
change as the NTA exercised its authority over trans-
port operators. There are many reasons for ghost buses,
one of which was due to communication failures
between operators as discussed below and resolved by
early 2016. Its elimination and that of other issues that
affected accuracy involved both repairing bugs and
policing adherence to standards. For 2017, it was
reported that 97.5% of RTPI information was correct
with reference to arriving within 1 minute of the ‘Due’
prediction (Bus Átha Cliath, 2017), up from 92% in
2012 (Worrall, 2012) and 89% when initially launched.

In agreement with language policies for State bodies,
RTPI information, including destination information,
on trains, buses, and trams, is displayed and announced
in both English and Irish. The original versions of
many Irish place names now share equal space with

their anglicised counterparts, e.g. Cluain Saileach (a
meadow of willows) and ‘Clonsilla’. The ghost bus
anomaly resulted from a series of actions starting
with Dublin Bus curtailing a bus and redirecting it
before meeting its scheduled destination. Of the two
information standards used by transport organisations
in Ireland, VDV452 is used for scheduled timetables
and SIRI for real-time feeds.2 Dublin Bus changed a
19-character field in SIRI called ‘DestinationRef’ in a
way that partners did not expect, as the employee cited
below explains, because it did not have enough space
for both languages, necessitating the use of a further
field called ‘JourneyNote’:

For example, we send the journey ref [which] would

say, ‘Okay, this journey is doing this destination and

now that destination has changed’. So say, for example,

a trip is going from A to B and we decide, okay, it is not

going to B anymore, we’ll bring it back somewhere.
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Figure 1. A timeline of RTPI-related transport technology deployments in Dublin for bus and tram services, with further events on

the left. Iarnród Éireann is not included, which relies on its legacy signalling systems in addition to AVL.
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Now it can’t handle that at the moment, the new des-

tination, it still tells passengers you are going all the

way to B. They are working on it and they are almost

there. We had the same problem with the street signs

for quite some time but they worked on that and they

were fixed [by their external contractor] and that got

resolved, that got changed. So now for example if you

are going to Maynooth on a 66 [bus] for example, and

for whatever reason, operational or whatever, they

decide, okay this bus can’t go the full journey, it can

only go as far as Leixlip. We can now tell on the street

signs, we can tell on our app on our website that to the

passengers straight away, it could be on the bus itself,

on the displays, they can be told this bus is now finish-

ing in Leixlip. Whereas on the NTA’s app they are still

telling you ‘Maynooth’. So it will be fixed quite soon,

they have been working on it for a number of months

now so it should be fixed soon. But on the street signs

and our web that is reflected correctly. But that is kind

of a bug thing, that isn’t anything to do with the stand-

ards really, that is more a bug on their internal system

than anything. It is no limitation of SIRI or the VDV

that has caused that. (Interview RTPI01, Dublin Bus)

Dublin Bus considered that their usage was consistent
with SIRI and that the issue reflected an external con-
tractor’s inability to read this information. In contrast,
the NTA interviewee cited below indicated
‘JourneyNote’ as being more for minor notes like
being ‘guide dog-friendly’. This alleged non-standard
use broke the information feed downstream, even if
the change suited the challenge of frequently curtailing
buses due to the large but necessary interruptions
caused by Luas cross city.

A common solution for multiple language provision
is to use a generic code in a look-up table with

corresponding real-world names in various languages
in adjacent columns:

Yes, and largely that works fine if you don’t go putting

stuff in places where it shouldn’t be, like journey notes

shouldn’t be in there. So the system trying to under-

stand that doesn’t see it and therefore these, I suppose

important things, because curtailments and cancella-

tions are really what you need to know about in real-

time. You need to know if your bus is not going to the

destination or if it has been cancelled. So they are

things we can fix but they are expensive because what

you will find is that an incumbent will see that as an

opportunity to, let’s say, know that nobody is going to

compete with their price and therefore I would say give

in ridiculously high prices to do fairly simple stuff. [. . .]

And so really our experience is to kick back and say,

‘Sorry, guys’, right at the very start, stick to the speci-

fications. [. . .] So over the years the system has been in

place and more people want to build ancillary systems

or reuse the information, the more we have learned that

right at the start you need to be the policeman.

(Interview SD13, NTA)

The central regulator talks of their role of policing
common standards to ensure fair competition between
providers through shared rather than privileged infor-
mation. It has weekly meetings with RTPI representa-
tives from the main transport providers during which
anomalies and their potential solutions are discussed.
While assertive about its policing role, a solution was
negotiated that allowed Dublin Bus a degree of flexibil-
ity in their implementation of SIRI, creating custom
code to recognise Dublin Bus curtailments. The
changes were visible first on the street signs, and
reflected later on the NTA smartphone app.3

Figure 2. Dublin bus live monitoring of schedule adherence in their control room.
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This second-order issue on adherence to common
standards reflects a transition from putting in place
the basic infrastructure towards consolidating RTPI
in a new suite of procedures and processes, yet also
interacts with higher third-order reconfigurations of
power relations as the regulator imposes a new perfor-
mance-driven ethos on operators. As the transport
franchise-holder, the NTA has the power to outsource
routes to other suppliers, oversees performance man-
agement for all contracted transport providers, and is
therefore at the heart of negotiations on privatisation
and standardisation. During the time of fieldwork,
there were industrial disputes involving Luas tram dri-
vers, and protracted discussions on the costs and bene-
fits of partial privatisation of national services targeting
Dublin Bus and Bus Éireann. Over the course of 2016
to 2018, 24 routes from Dublin Bus and 6 routes from
Bus Éireann were listed for privatisation (Tallaght
News, 2017) with UK firm Go-Ahead winning both
competitions. The NTA manages routes, schedules,
fares, vehicles, quality control and RTPI for new pro-
viders. In this manner, it hopes that like with Transport
for London, tenders for routes are largely inconsequen-
tial for passengers through a model of competition for
the market rather than in the market (Preston and
Almutairi, 2013).

Operational consolidation here was the prerogative
of an increasingly assertive state actor, the NTA, which
addressed administrative fractures between State com-
panies through control over both markets and data.
This facet of data ratcheting comprises data-
driven organisational control over operators and
requires collective adherence to data policies. At the
intra-organisational scale, within Dublin Bus and Bus
Éireann, real-time data on the location of vehicles
and drivers also enabled data-driven organisational
control, in part based on new data-driven functional-
ities. This ratcheting provides momentum to the
cycle of expansionism, experimentalism and consolida-
tion as new datasets are created and further use-
cases found.

Data-driven procedural change and data
ratcheting

AVM and RTPI technologies in Dublin have given rise
to a cascade of data-driven organisational changes. In
many instances, these are local learnings of established
international best-practices, yet also include instances
of innovation such as the many small data-driven
changes to routes to reach industry-standard RTPI
accuracy. Dublin Bus’s schedule management software
is reliant on AVL and creates a more constant and
intimate connection between drivers and controllers.
The latter are housed in a control centre and seated

at cubicles equipped with several graphical user inter-
faces for monitoring buses in real-time.

Much the same as the recording devices affixed to
chain retail workers, these technologies constrain
employee behaviour in order to provide an experience
to customers that is invariable and therefore negotiable
with less cognitive effort. Dublin Bus is a public com-
pany and many of the staff in the control room are ex-
drivers themselves, their exchanges with drivers replete
with banter and laughter yet nevertheless effecting a
culture change within the organisation:

[B]efore the AVL system, the only way of knowing

where a bus was, unless there was a guy out on the

street watching the buses coming in and the inspector

on the road. Or else it was the control up above calling

the driver and saying, ‘Where are you?’ And now it is a

case of . . . It was funny at first seeing it happen because

they’d be saying I am in such and such a street. And the

controller would say, ‘No you are not. I can see within

20 seconds of where you are’. That took a bit of getting

used to and now the drivers are at the point where they

are embracing it very much so. It took a while for them

to trust it. [. . .] But yeah, they have taken it on board

now and they do realise all the old ways of operating

have to change. (Interview RTPI01, Dublin Bus)

The interviewee above notes the role of AVL in sup-
porting measures to improve quality of service. They
are enforced not only by control room operators, on
whose terminal screens buses are highlighted in red for
being behind or ahead of schedule (see Figure 2), but
also on vehicles themselves through devices to notify
drivers if they are running ahead of their scheduled
stops via a beep and a red dashboard light (only
when the vehicle is stationary). Together with the con-
trol room and its real-time displays, data analytics, and
a management team with key performance indicators to
meet, these technologies all coerce human behaviour
towards minimising error and irregularities. A realisa-
tion of the potential of data to drive internal reform has
led to further local innovations, including using data
analytics packages to recalibrate schedules (timetables)
based on statistically examined journey times, and
developing new internal performance metrics for man-
agement. These measures further improve RTPI accur-
acy, and evidence how data ratcheting reshapes internal
organisational control as engineers experiment with,
and operationalise, new functionalities.

In addition to schedule and route alterations, further
interventions in the interest of efficiency can be either
physical, such as changes to the road layout, or digital,
through alterations to the junction signalisation pat-
terns of traffic lights. The greater part of Dublin’s
road network is managed with industry-standard
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software (SCATS) that alters junctions dynamically in
response to traffic by swapping between pre-
programmed plans. Traffic prioritisation has now
been rolled across the SCATS network for public trans-
port by using RTPI data in SIRI format to estimate
proximity (O’Donnell et al., 2018). This belated but
eventually successful deployment of traffic prioritisa-
tion (see Figure 1) relates to third-order issues sur-
rounding the dominant trend of transitioning to a
low-carbon future by progressively revoking privileges
once handed out willingly to the private motorist and
increasing investment into public transport.

The schedule and fleet management software, the
data analytics functions for route optimisation, and
automated bus prioritisation form part of an estab-
lished practice of ratcheting the recognised power of
data to redefine procedures, and by extension, urban
flows and spatial relations. Data-driven functionalities
become perceived as integral during this phase of effi-
ciency and rationalisation. A Dublin Bus technician
notes that data are ‘growing more and more into deci-
sion-making around the company’ and adds:

So it is a complete [change of] mind-set, everything has

changed. Once you trust in the data better decisions can

be made [. . .].

It was unbelievable straight away, things like when a

door opened, you could see straight away, just infor-

mation that you just couldn’t have before so straight

away you were just giving the power to the managers to

see exactly what was going on, the routes, and ultim-

ately that is getting back to the customers. (Interview

RTPI04, Dublin Bus)

This localised data experimentalism and consolidation
occur alongside larger-scale operational changes as cen-
tralised authorities coordinate transport services and
data, creating new products and services to consolidate
those initially created by individual transport providers.
This includes the present BusConnects programme,
initiated in 2017 and led by the NTA, for the rational-
isation of all bus services in Dublin. Two NTA partici-
pants below recognise the potential of data for better
strategic planning:

So I think once you have the kit with proper manage-

ment and working between different companies you can

make these improvements to raise the reliability and the

perception of reliability to people. So I see expanding

the system but also harvesting it to offer better prod-

ucts. (Interview SD13, NTA)

Yes, we use the data for a number of purposes. The

initial objective was to provide more information to the

consumers to actually make transport more accessible;

that is the real value we saw from the information that

we were collecting and providing. But certainly we have

realised now that we have a huge wealth of information

at our disposal in terms of where buses are at, the

best journey patterns being used, and we can analyse

that now and start using that to make the planning

decisions more effective going forward. (Interview

DSC27, NTA)

The expansion of metrics and accountability reinforces
an ‘audit culture’ (Strathern, 2000), dependent on tech-
nologies that ostensibly serve passenger service provi-
sion but which also expand into technologies of control
and regulation. Data ratcheting represents a quasi-
Lamarckian evolutionary progression as organisations
create ever more sophisticated secondary products from
high-quality data, recognising its power and curating it
with discretion according to socio-cultural specificities
and legal frameworks. On the one hand, this may
involve preventing such data from being misused for
criminal purposes, while on the other, it could be
used to maintain competitive advantage or increase
control over consumers or citizens. The empirical
data presented here account for largely internal and
inter-organisational data-driven innovations yet may
eventually lead to broader data assemblages beyond
the transport sector, aligning with broader commercial
or political interests.

Conclusion

In their future roadmap of ubiquitous computing,
Dourish and Bell (2011) highlight the emergent nature
of technologies, which initially developed separately,
coalesce in what are seen retrospectively as unitary sys-
tems such as the smart home or the city dashboard
(Kitchin et al., 2016). Technological changes are also
essentially organisational and procedural, liberating the
human mind from repetitive drudgery, and facilitating
new forms of behaviour between people and their inter-
action with the environment. Tracing their evolutionary
development reveals the multiple path dependencies
and reverse salients (Hughes, 1993) that characterise
their real-world implementation, and furthermore illus-
trates the value of blending the historicism of infra-
structure studies with the study of data assemblages.

The rollout of RTPI in Dublin is interrelated with
broader transport technologies including automated
vehicle location systems and traffic control systems,
and evidences how its local implementation is part of
an arc of technological changes in ITS. It initiates in the
1970s with advanced trials that were inconsistently
resourced by the State until the context itself had
shifted. The national economy had moved towards
higher-value technologies and services with a more
informed and demanding workforce, necessitating the
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provision of seamless multimodal transport, integrated
ticketing, and RTPI.

The deployment of RTPI allowed individual oper-
ators such as Dublin Bus to experiment with and drive
their own internal procedural reforms, with instances of
both localised learnings and more genuine innovations
as local actors participated in European and inter-
national networks for developing and disseminating
best practices. These activities are described here as
instances of data ratcheting, as new data-driven func-
tionalities are implemented iteratively as they are dis-
covered in a local context, oriented towards a more
rationalised data-driven culture. Glitches such as
‘ghost buses’ provide a window into the politics of
data, as the transport sector modernised and the
NTA consolidated its mandate to improve passenger
experience by policing standards and controlling pro-
viders. This hierarchy of procedural authority, from
regulator to operator to driver, has been strengthened
through the creation of governmental bodies that
ensure seamless exchange of data and the oper-
ational consolidation of data-driven procedures. In
addition to favouring a rationalised audit culture
(Strathern, 2000), this will likely assist in future data-
driven functionalities that integrate with other sectors
and services.

Urban datafication in transport has been charac-
terised here as consisting of the three translations of
data expansionism, data experimentalism and oper-
ational consolidation. It is tentatively argued, pending
further comparative reviews of in-depth local studies,
that there will be an increasing tendency to curate and
streamline data as the potentialities of Big Data shared
across multiple domains are appreciated and realised.
Transport operators, particularly those serving massive
urban populations, can use tracking technologies for
efficiency, commerce and security. Transport for
London, for example, while maintaining their open
data portal and subject to comprehensive UK and
EU data protection and privacy regulations, are invest-
ing in large-scale tracking technologies to inform their
services (McMullan, 2018; Sweeney, 2018). Transport
data may be combined with social networks and public
services profiles to perform new forms of citizenship as
smartphone-delivered personalised notifications and
services become normalised. Further research could
enquire as to the multiple data streams that are becom-
ing operational, their epistemologies, and their primary
benefactors. For instance in China, transport apps for
citizens are being tied to unique identifiers that may
restrict or incentivise transport options according to
their government-measured ‘social credits’ (Carney,
2018). Such developments may similarly benefit from
the comprehensive approach of data assemblages that
contextualise data-driven technologies in their socio-

cultural contexts, as well as from the extended time-
scales of infrastructure development and attention to
glitches and breakdowns.
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Notes

1. A clear instance of technology-dependent automation is

driverless underground trains in cities like Paris (Lines 1
and 14), where the speed and intervals between trains are

tightly controlled through a central system and arrays of

sensors and machinery. In this case, they become code/
spaces (Kitchin and Dodge, 2011) in which software and

space are mutually constitutive.
2. Service Interface for Real-time Information (SIRI) is a

European standard in the form of an extended mark-up

language (XML) for distributing real-time transport
information developed by a partnership of European

transport bodies (see: http://www.transmodbku.kiljikil-
jik;/liilulel-cen.eu/standards/siri/, accessed 13 November

2018). VDV stands for the German Verband Deutscher

Verkehrsunternehmen (Association of German
Transport Companies), who have created three timeta-

bling standards. VDV452 is the main planned timetable,

while VDV453 is stop-centric, providing real-time
updates per stop. VDV454 is route-centric, reflecting

scheduled times on a given route.
3. According to the SIRI documentation (https://

www.vdv.de/siri.aspx) and its implementation elsewhere,
it would seem for the Estimated Timetable function in

SIRI, JourneyNote is by design indicated primarily, but

by no means exclusively, for additional information such
as being wheelchair friendly rather than destination infor-

mation, which corresponds instead to the DestinationRef

and DestinationName fields.
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Editorial

How should we theorize algorithms?
Five ideal types in analyzing
algorithmic normativities

Francis Lee1 and Lotta Björklund Larsen2

Abstract

The power of algorithms has become a familiar topic in society, media, and the social sciences. It is increasingly common

to argue that, for instance, algorithms automate inequality, that they are biased black boxes that reproduce racism, or

that they control our money and information. Implicit in many of these discussions is that algorithms are permeated with

normativities, and that these normativities shape society. The aim of this editorial is double: First, it contributes to a

more nuanced discussion about algorithms by discussing how we, as social scientists, think about algorithms in relation to

five theoretical ideal types. For instance, what does it mean to go under the hood of the algorithm and what does it mean

to stay above it? Second, it introduces the contributions to this special theme by situating them in relation to these five

ideal types. By doing this, the editorial aims to contribute to an increased analytical awareness of how algorithms are

theorized in society and culture. The articles in the special theme deal with algorithms in different settings, ranging from

farming, schools, and self-tracking to AIDS, nuclear power plants, and surveillance. The contributions thus explore, both

theoretically and empirically, different settings where algorithms are intertwined with normativities.

Keywords

algorithms, theory, normativities, black boxing, infrastructures, actor-network theory

This article is a part of special theme on Algorithmic Normativities. To see a full list of all articles in this special

theme, please click here: https://journals.sagepub.com/page/bds/collections/algorithmic_normativities.

The omnipresence of algorithms

Algorithms are making an ever-increasing impact on
our world. In the name of efficiency, objectivity, or
sheer wonderment algorithms are becoming increas-
ingly intertwined with society and culture. They seem
pervasive in today’s society, materializing here, there,
and everywhere. In some situations, algorithms are
valued, or even treasured, in others they lead to anger
and mistrust, sometimes they even seem threatening or
dangerous.

In the wake of this algorithmization of the world,
social scientists have taken an increasing interest in how
algorithms become intertwined with society and cul-
ture. The list of interventions and perspectives seems
endless.1 Some researchers claim that algorithms con-
trol money and information (Pasquale, 2015) or shape

our romantic endeavors (Roscoe and Chillas, 2015).
Others highlight the inscrutability of algorithms and
work to understand the effects of their opacity
(Burrell, 2016; Diakopoulos, 2016; Fourcade and
Healy, 2017; Pasquale, 2015). Still others argue that
algorithms automate inequality (Eubanks, 2017;
Noble, 2018; O’Neil, 2016), and reproduce existing
social structures and biases (Angwin et al., 2016;
Kirkpatrick, 2016; Sandvig et al., 2016). In line with
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this, many researchers have started asking questions
about algorithmic decision-making (Zarsky, 2015),
accountability (Diakopoulos, 2016), or ethics
(Kraemer et al., 2010; Neyland, 2018). Implicitly, or
sometimes very explicitly, many of these observe
that algorithms are intertwined with different normativ-
ities and that these normativities come to shape our
world.

In our view, however, there is a need for a meta-
discussion about how normativities become intertwined
with algorithms. That is, there is today a bounty of
approaches, as evident from above, and a growing
body of analytical perspectives on algorithms.
However, there are few, if any, meta-analytical discus-
sions that attempt to deal with the strengths and weak-
nesses of different theoretical and analytical
approaches. Consequently, this special theme seeks to
provoke a meta-reflection on how social and cultural
researchers come to theorize, analyze, and understand
algorithmic normativities.

Five ideal types in analyzing algorithms

In essence, what we are asking is what alternatives there
are to emphasizing opacity, black-boxing, and a seduc-
tive language of uncovering ‘biased’, ‘racist’ or ‘sexist’
algorithms? What other ways of approaching algo-
rithms are there apart from going under the ‘opaque’
hood to understand the real politics of the ‘black
boxed’ algorithms? To stimulate this meta-reflection,
and help think these issues through, we want to draw
playfully on the metaphor of the engine hood. We ask
what positions, other than ‘going under the hood’ to
uncover the hidden normativities of the algorithm, are
there?

The goal of this exercise is to reflect on and prob-
lematize current ways of analyzing algorithms, and to
situate the articles in this special theme in relation to a
meta-reflection about how we analyze algorithmic nor-
mativities.2 In doing this, we outline five ideal-typical
accounts of algorithms in society and situate them in
relation to classical analytical positions in Science and
Technology Studies (STS), where debates about the
social analysis of technology abound. In outlining
these analytical ideal types, we also summarize and situ-
ate each article in this special theme in relation to these
ideal types.

We are aware that this strategy risks foregrounding
some perspectives while backgrounding others. There is
also a risk that we become too harsh in our ideal typing
by omitting and downplaying overlaps and similarities
between different perspectives. So, bear with us if we do
violence to more nuanced and multifaceted perspectives
when we pull some things apart and push some other
things together.

Under the hood: The politics of

algorithms

Let us start by going under the hood. A number of
researchers maintain that we must analyze algorithms
themselves and go under the hood to understand their
inherent politics (cf. Ruppert et al., 2017). Several social
scientists interested in algorithms or Big Data gather in
this camp. For instance, philosophers sometimes like to
debate the algorithmic ethics of self-driving cars
(Nyholm and Smids, 2016), or racial bias in facial rec-
ognition (Chander, 2017), while other analysts have
dealt with the algorithmic biases of criminal risk pre-
diction (Angwin et al., 2016).

In this analytical ideal type, the logic of the algo-
rithm appears like a deus ex machina impinging on soci-
ety’s material politics. This analytical ideal type draws
on similar logics to Langdon Winner’s (1980) classic
article that deals with the politics of technological arti-
facts. In his analysis, it is the functioning of the techno-
logical system that is in focus, and Winner invites us to
see artifacts as materialized laws that redefine how we
can act for generations to come.

Algorithms are also productively and provocatively
understood in this way. For instance, in Christopher
Miles contribution to this special theme, he fruitfully
illustrates how algorithms become intertwined with spe-
cific normativities in American farming. Miles shows
that although new digital practices are introduced,
existing socio-economic normativities are often
preserved or even amplified. Thus, the supposedly
radical changes in farming practices, suggested by
precision agriculture algorithms, only affect certain
parts of farming but also seem to thwart other imagined
futures.

In this type of analysis of algorithms, just as in the
case with Winner’s bridges, the politics, effects, and
normativities that are designed into algorithms
become foregrounded. A crucial task for the researcher
thus becomes to analyze invisible algorithmic norma-
tivities to understand how they are imbued with power
and politics. However, with this type of analysis, might
we risk losing sight of the practices, negotiations, and
human action that algorithms always are intertwined
with? Might we become so seduced by the algorithms,
that we forget the many social practices that surround
them?

Working above the hood: Algorithms

in practice

What would happen if we instead stay above the hood
and never get our hands dirty with the nuts and bolts of
the inscrutable algorithms? Here, on the other side of
our constructed spectrum of ideal types, we could place
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ethnomethodological analyses of the achievement of
social order. In this analytical position, algorithms
would emerge as ‘contingent upshot of practices,
rather than [as] a bedrock reality’ (Woolgar and
Lezaun, 2013: 326).

In terms of classic studies of materiality in social
interaction, Charles Goodwin’s (2000) analysis of the
classification of dirt might serve as emblematic. In his
article, Goodwin analyzes the interaction, talk, point-
ing, disagreement, that happens when archaeologists
attempt to classify dirt color using a so-called
Munsell-chart. Goodwin shows how the human prac-
tices of interpreting and debating is crucial to under-
standing how the meaning of material artifacts is
decided.

In relation to algorithms, Malte Ziewitz’ (2017)
account of an ‘algorithmic walk’ also humorously
points us toward the negotiations that surround most
algorithms. He highlights the constant work of inter-
preting, deciding, and debating about algorithms. In an
auto-ethnographic experiment, Ziewitz takes a stroll
with a friend in the streets of Oxford and makes it
into an algorithmic walk. Before the walk, Ziewitz
and his friend construct strict algorithmic rules for
how to turn at intersections during the walk. But walk-
ing like an algorithm turns out to be a difficult task, and
Ziewitz and his friend soon start debating the meaning
of the algorithm. What direction does the algorithm
want us to go at this intersection?

In this vein, Lotta Björklund Larsen and Farzana
Dudwhala’s contribution to this special theme also dis-
cusses how humans adapt to algorithmic outputs, an
adaptation that includes normative ideas about how
the outcomes of algorithms are interpreted as normal
or abnormal. Their argument is that the output of algo-
rithms trigger, or as they propose, recalibrate human
responses. Sometimes accepting the algorithmic output,
sometimes not, so that an understanding of a normal
situation can be achieved.

In another article in this special theme, Patricia
DeVries and Willem Schinkel also undertake an ana-
lysis of the practical politics of algorithms. In their art-
icle, they analyze how three artists construct anti-
facial-recognition face masks to critique and resist
facial recognition systems. They take these face masks
as a starting point for exploring the social anxiety
around surveillance and control. DeVries and
Schinkel argue that there is a tendency, in these
works, to defend a liberal modernist construction of
the autonomous subject and the private self. The mean-
ing of both the face masks and the surveillance algo-
rithms are thus negotiated in practice.

This analytical stance elegantly sidesteps the discus-
sion about which nefarious or biased politics are
designed into the algorithm. The human negotiations

drawing on contexts, materialities, or even face masks,
become foregrounded. Opening the opaque and black
boxed algorithm to decode its inscrutable politics
becomes almost irrelevant; it is the interpretation in
practice that is in focus. However, do we then, by work-
ing above the hood, risk omitting what algorithms are
actually constructed to do? And, we might ask, what
then is the price of staying over the hood to focus on
practice?

Hoods in relations: Non-human agency
and black boxes

This brings us to the ideal type that approaches algo-
rithms, and technology, through an analysis of non-
human agency and relationality—perhaps a middle
road between going under the hood and staying
above it? This analytical ideal type focuses on the inter-
twining of human and non-human actors (cf. Callon
and Law, 1995).3 Here, for instance, Actor-Network
Theory (ANT) in its various guises zooms in on the
effects of how both non-human and human actors are
intertwined (Latour, 1987).4

Relationalities are, for example, the focus of the art-
icle by Francis Lee, Jess Bier, Jeffrey Christensen,
Lukas Engelmann, Claes-Fredrik Helgesson, and
Robin Williams. The authors criticize the current
focus on fairness, bias, and oppression in algorithm
studies as a step toward objectivism. Instead, they pro-
pose to pay attention to operations of folding to high-
light how algorithms fold a multitude of things, such as
data, populations, simulations, or normalities. For
instance, they show how the algorithmic calculation
of the spread of an epidemic can produce particular
populations or countries as being close to an epidemic,
while others seem safely distant. The algorithmic pro-
duction of different relations thus having potentially
far-reaching consequences for both individuals and
nations.

Similarly, in a comment on accountability and
authorship, Elizabeth Reddy, Baki Cakici, and
Andrea Ballestero highlight, through the algorithmic
experiments of a comic book artist, how algorithms
can do much of the work of assembling detective stor-
ies. Yet, accountability is still organized, normatively
and legally, around human authorship and human
agency. So, although algorithms might produce ‘the
work,’ ideas about authorship and accountability are
still organized around human subjectivity and agency.
They observe that there seems to be a tendency to
ascribe agency to humans over machines (cf. Callon
and Law, 1995).

In this ideal type, by focusing on the practices of
relational ordering, we can come to understand the
complex mixing of agencies and accountabilities
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between algorithms and humans. Instead of seeing
black boxed algorithms as a delimiter for a study, this
position sees it as the starting point for inquiry.5

Attempting to discern both how the algorithm func-
tions and how it relates to human practice is the
modus operandi. Perhaps one might describe this ideal
type as combining ‘going under the hood’ with the
practice oriented ‘staying above the hood’ ideal types.
However, this relational perspective has also been cri-
ticized for being apolitical and blind to the power-
struggles of weaker actors, as well as the political effects
that algorithms could have on the world (cf. Galis and
Lee, 2014; Star, 1991; Winner, 1993).

Lives around hoods: Torque,
classification, and social worlds

Let us widen the lens even more: From detailed studies
of interaction, negotiation, and relationality to an ana-
lysis of neighborhoods (da-dum-tsch). This analytical
position takes an interest in infrastructures of classifi-
cation and their interaction with human biographies.
Here, the politics of infrastructures and classification
become the focus. These types of analyses highlight
how people’s lives become ‘torqued’, or twisted out of
shape, by classification systems.6

For instance, Bowker and Star (1999), in their classic
work on infrastructures of classification, show how the
socio-material race classification systems of the South
African apartheid regime affected human lives in some-
times unpredictable ways. For instance, a light brown
child born to dark brown parents could be forced to go
to school in another district. But they also show how
neighborhoods could come together to challenge the
classification system—as the definition of race in apart-
heid South Africa was founded on social and legal
negotiations.

In moving this ideal type to the algorithmic arena, a
thought-provoking approach might be Philip Roscoe’s
(2015) study of a kidney transplant algorithm in the
UK. He shows how the question ‘Who is a worthy
recipient of a kidney?’ is answered in algorithmic
form. But the algorithm—just as apartheid race classi-
fications—is tied to the valuations of worthy recipients.
Furthermore, just as neighbors could sometimes band
together to challenge a color classification in South
Africa, so can hospital staff today ‘game’ the algorithm
for a ‘worthy’ recipient, while the algorithm is still used
as an escape route from making heart-wrenching deci-
sions on life and death.

Such negotiated processes of classification are
also the center of attention in Helene Gad Ratner
and Evelyn Ruppert’s article in this special theme,
which analyses the transformation of data for statistical

purposes. In their text, they show how metadata and
data cleaning as aesthetic practices have normative
effects. Just as Bowker and Star (1999) dealt with the
struggles of, for instance, medical, biological, or racist
classifications, Ratner and Ruppert show how classifi-
cation struggles happen through the practices of data
cleaning. One instance they document is how absences
and indeterminacies in data are resolved through both
algorithmic and human interactions with the data.
Importantly, these interactions determine what
values the data can obtain. Thus, similar to how the
apartheid regime performed the population of
South Africa, Ratner and Ruppert bring analytical
awareness to the normative and performative effects
of classification work in relation to homeless and
student populations and how they are enacted by
infrastructures.

In this ideal type, the work of classification and
the relations between human lives and classification
systems becomes foregrounded. Here the politics of
twisting lives out of shape becomes the focus.
However, perhaps a risk is that we lose sight of the
detailed interactions of how social order is main-
tained in practice? Or does a focus on the algorithms
of classification risk leading us back, full circle,
to seeing algorithmic systems as having inherent
politics again?

The mobile mechanics: The power of
analytical reflexivity and mobility

Finally, we wish to highlight how a meta-reflexive and
meta-analytical attitude toward algorithms opens new
avenues for inquiry. By being attentive to how social
scientists relate to algorithms as well as to those who
work with them, our inherent normativities and pre-
sumptions come to the fore.

In this special theme, two articles analyze such inter-
ventions. David Moats and Nick Seaver challenge our
thinking about how computer scientists understand the
work of social scientists. In the article, Moats and
Seaver document their attempt to arrange an experi-
ment with computer scientists to test ingrained bound-
aries: how can the quantitative tools of computer
science be used for critical social analysis? As it turns
out, the authors were instead confronted with their own
normative assumptions. By sharing these insights, the
authors provoke the reader’s assumptions about the
normative disparities inherent in different scientific
disciplines.

Last, and in a similarly reflexive approach,
Jeremy Grosman and Tyler Reigeluth propose a meta-
framework for understanding algorithmic normativities.
Discussing the notion of normativity from the point of
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view of various analytical positions, algorithmic systems
are said to produce three kinds of normativities: tech-
nical, sociotechnical, and behavioral. The authors
argue that algorithmic systems are inhabited by norma-
tive tensions and that a fruitful approach is to explore the
tensions instead of the normativities themselves. Their
argument is that this approach allows them to show
which norms get more traction than others and perhaps
even suggest why this is so.

Conclusion

A point of departure for this special theme was that
algorithms are intertwined with normativities at every
step of their existence; in their construction, implemen-
tation, as well as their use in practice. The articles
explore theoretically and empirically different settings
where humans and non-humans engage in practices
that are intertwined with normative positions or have
normative implications. The array of theoretical
approaches—anxieties, pluralities, recalibrations,
folds, aesthetics, accountability—that implicate algo-
rithms force us to engage with the multiple normative
orders that algorithms are entangled with.

In the articles, we get to see how algorithms are
intertwined with, on the one hand, expectations of
how things ought to be—normative expectations—and,
on the other hand, how they enact the normal, the typ-
ical, as well as the abnormal and atypical. The articles
thus scrutinize ideas of normativities in and around
algorithms: how different normativities are enacted
with algorithms, and how different normativities are
handled when humans tinker with algorithms.

With this brief editorial, we hope to entice the reader
to explore the various contributions of this special
theme. We also hope to have shed light on how algo-
rithms are imbued with normativities at every step, and
how these normativities both shape and are shaped by
society. In this manner, the special theme seeks to con-
tribute to a more nuanced discussion about algorithmic
normativities in complex sociotechnical practices.
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Notes

1. See for instance, Amoore (2013); Beer (2009); Dourish

(2016); Gillespie (2014); Kitchin (2014); Neyland (2015);

Schüll (2012); Seaver (2017); Striphas (2015); Totaro and

Ninno (2014); Ziewitz (2017). See also the critical algo-

rithm studies list: https://socialmediacollective.org/read-

ing-lists/critical-algorithm-studies/
2. The articles in this special theme build on conversations

spanning three workshops and a PhD summer school on

algorithms in society that were held in Stockholm, Sweden,

between 2014 and 2017.

3. Also, Haraway’s (1992) metaphor of the ‘Coyote Trickster’

includes non-human actors in a material-semiotic analysis.
4. Classic ANT studies have highlighted for instance how

humans ‘enroll’ microbes, scallops, or speed-bumps in

their network to support their various causes.
5. Sometimes in critical algorithm studies, this challenge—to

stay above the hood in our playful metaphor—is expressed

as going ‘beyond opening the black box’ to study practice

and culture (cf. Geiger, 2017). From an ANT perspective,

this interpretation of the black box metaphor is misplaced.

It is precisely the manifold and complex relations that the

black box contains and relates to that is in focus in this

analytical ideal type. Going ‘beyond’ the black box in this

view reifies the idea that studying ‘the social’ is different

than studying ‘the technical.’

6. On torque see Bowker and Star (1999).
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